Improved Physical Optics Computation Near the Forward Scattering Region: Application to 2-D Scenarios

The classical physical optics (PO) formulation of the scattered fields suffers from the loss of accuracy when the observation angle widely deviates from the specular direction. This is even worse in the "forward region," i.e., for the bistatic angles between 90° and 270°. The method presen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2021-01, Vol.69 (1), p.417-428
Hauptverfasser: Pairon, Thomas, Craeye, Christophe, Oestges, Claude
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 428
container_issue 1
container_start_page 417
container_title IEEE transactions on antennas and propagation
container_volume 69
creator Pairon, Thomas
Craeye, Christophe
Oestges, Claude
description The classical physical optics (PO) formulation of the scattered fields suffers from the loss of accuracy when the observation angle widely deviates from the specular direction. This is even worse in the "forward region," i.e., for the bistatic angles between 90° and 270°. The method presented in this article aims at improving the accuracy of the fields in this region by finding the currents induced on the nonilluminated part of the object, where the classical PO assumes zero currents. The proposed approach reformulates the initial problem using equivalent currents over a domain surrounding the object. The equivalent currents then act as new sources that induce electrical currents computed by the classical PO formulation. The computation of the equivalent problem is accelerated using the multipole expansion of Green's function, including appropriate singularity extraction in the very near field. This approach provides an error that is significantly lower in the forward direction than the classical PO formulation. The principles of this new approach are presented and validated for the 2-D scenarios.
doi_str_mv 10.1109/TAP.2020.3008669
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2020_3008669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9142316</ieee_id><sourcerecordid>2475959831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-a9be2363c22cca10ace459688c15197d6d03a6476ebe8250df76e245d340fa6d3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z8bZp4K9VqodiiFbyFNDvbbml31yRV-u9NrXiaGXjeGeZB6JqSHqVE380Hsx4jjPQ4IUpKfYI6NM9Vxhijp6hDCFWZZvLjHF2EsE6jUEJ0EIy3rW--oMCz1T5Uzm7wtI2VC3jYbNtdtLFqavwC1uO4Ajxq_Lf1BX5zNkbwVb3Er7BMyD0etO0m5X_52GCWPSQKauurJlyis9JuAlz91S56Hz3Oh8_ZZPo0Hg4mmWOaxszqBTAuuWPMOUuJdSByLZVyNKe6X8iCcCtFX8ICFMtJUaaWibzggpRWFryLbo9700-fOwjRrJudr9NJw0Q_17lWnCaKHCnnmxA8lKb11db6vaHEHGSaJNMcZJo_mSlyc4xUAPCPayoYp5L_AHgbcBs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475959831</pqid></control><display><type>article</type><title>Improved Physical Optics Computation Near the Forward Scattering Region: Application to 2-D Scenarios</title><source>IEEE Electronic Library (IEL)</source><creator>Pairon, Thomas ; Craeye, Christophe ; Oestges, Claude</creator><creatorcontrib>Pairon, Thomas ; Craeye, Christophe ; Oestges, Claude</creatorcontrib><description>The classical physical optics (PO) formulation of the scattered fields suffers from the loss of accuracy when the observation angle widely deviates from the specular direction. This is even worse in the "forward region," i.e., for the bistatic angles between 90° and 270°. The method presented in this article aims at improving the accuracy of the fields in this region by finding the currents induced on the nonilluminated part of the object, where the classical PO assumes zero currents. The proposed approach reformulates the initial problem using equivalent currents over a domain surrounding the object. The equivalent currents then act as new sources that induce electrical currents computed by the classical PO formulation. The computation of the equivalent problem is accelerated using the multipole expansion of Green's function, including appropriate singularity extraction in the very near field. This approach provides an error that is significantly lower in the forward direction than the classical PO formulation. The principles of this new approach are presented and validated for the 2-D scenarios.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2020.3008669</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bistatic radar cross section (RCS) ; Complexity theory ; Computation ; Equivalence ; equivalence theorem ; Estimation ; fast multipole method (FMM) ; Forward scattering ; magnetic-field integral equation (MFIE) ; Method of moments ; Multipoles ; Optical surface waves ; Physical optics ; physical optics (PO) ; Scattering ; shadowing ; Two dimensional displays</subject><ispartof>IEEE transactions on antennas and propagation, 2021-01, Vol.69 (1), p.417-428</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-a9be2363c22cca10ace459688c15197d6d03a6476ebe8250df76e245d340fa6d3</citedby><cites>FETCH-LOGICAL-c291t-a9be2363c22cca10ace459688c15197d6d03a6476ebe8250df76e245d340fa6d3</cites><orcidid>0000-0002-0902-4565 ; 0000-0002-8294-1001 ; 0000-0002-3867-0662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9142316$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9142316$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pairon, Thomas</creatorcontrib><creatorcontrib>Craeye, Christophe</creatorcontrib><creatorcontrib>Oestges, Claude</creatorcontrib><title>Improved Physical Optics Computation Near the Forward Scattering Region: Application to 2-D Scenarios</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>The classical physical optics (PO) formulation of the scattered fields suffers from the loss of accuracy when the observation angle widely deviates from the specular direction. This is even worse in the "forward region," i.e., for the bistatic angles between 90° and 270°. The method presented in this article aims at improving the accuracy of the fields in this region by finding the currents induced on the nonilluminated part of the object, where the classical PO assumes zero currents. The proposed approach reformulates the initial problem using equivalent currents over a domain surrounding the object. The equivalent currents then act as new sources that induce electrical currents computed by the classical PO formulation. The computation of the equivalent problem is accelerated using the multipole expansion of Green's function, including appropriate singularity extraction in the very near field. This approach provides an error that is significantly lower in the forward direction than the classical PO formulation. The principles of this new approach are presented and validated for the 2-D scenarios.</description><subject>Bistatic radar cross section (RCS)</subject><subject>Complexity theory</subject><subject>Computation</subject><subject>Equivalence</subject><subject>equivalence theorem</subject><subject>Estimation</subject><subject>fast multipole method (FMM)</subject><subject>Forward scattering</subject><subject>magnetic-field integral equation (MFIE)</subject><subject>Method of moments</subject><subject>Multipoles</subject><subject>Optical surface waves</subject><subject>Physical optics</subject><subject>physical optics (PO)</subject><subject>Scattering</subject><subject>shadowing</subject><subject>Two dimensional displays</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z8bZp4K9VqodiiFbyFNDvbbml31yRV-u9NrXiaGXjeGeZB6JqSHqVE380Hsx4jjPQ4IUpKfYI6NM9Vxhijp6hDCFWZZvLjHF2EsE6jUEJ0EIy3rW--oMCz1T5Uzm7wtI2VC3jYbNtdtLFqavwC1uO4Ajxq_Lf1BX5zNkbwVb3Er7BMyD0etO0m5X_52GCWPSQKauurJlyis9JuAlz91S56Hz3Oh8_ZZPo0Hg4mmWOaxszqBTAuuWPMOUuJdSByLZVyNKe6X8iCcCtFX8ICFMtJUaaWibzggpRWFryLbo9700-fOwjRrJudr9NJw0Q_17lWnCaKHCnnmxA8lKb11db6vaHEHGSaJNMcZJo_mSlyc4xUAPCPayoYp5L_AHgbcBs</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Pairon, Thomas</creator><creator>Craeye, Christophe</creator><creator>Oestges, Claude</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0902-4565</orcidid><orcidid>https://orcid.org/0000-0002-8294-1001</orcidid><orcidid>https://orcid.org/0000-0002-3867-0662</orcidid></search><sort><creationdate>202101</creationdate><title>Improved Physical Optics Computation Near the Forward Scattering Region: Application to 2-D Scenarios</title><author>Pairon, Thomas ; Craeye, Christophe ; Oestges, Claude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-a9be2363c22cca10ace459688c15197d6d03a6476ebe8250df76e245d340fa6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bistatic radar cross section (RCS)</topic><topic>Complexity theory</topic><topic>Computation</topic><topic>Equivalence</topic><topic>equivalence theorem</topic><topic>Estimation</topic><topic>fast multipole method (FMM)</topic><topic>Forward scattering</topic><topic>magnetic-field integral equation (MFIE)</topic><topic>Method of moments</topic><topic>Multipoles</topic><topic>Optical surface waves</topic><topic>Physical optics</topic><topic>physical optics (PO)</topic><topic>Scattering</topic><topic>shadowing</topic><topic>Two dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pairon, Thomas</creatorcontrib><creatorcontrib>Craeye, Christophe</creatorcontrib><creatorcontrib>Oestges, Claude</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pairon, Thomas</au><au>Craeye, Christophe</au><au>Oestges, Claude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Physical Optics Computation Near the Forward Scattering Region: Application to 2-D Scenarios</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2021-01</date><risdate>2021</risdate><volume>69</volume><issue>1</issue><spage>417</spage><epage>428</epage><pages>417-428</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>The classical physical optics (PO) formulation of the scattered fields suffers from the loss of accuracy when the observation angle widely deviates from the specular direction. This is even worse in the "forward region," i.e., for the bistatic angles between 90° and 270°. The method presented in this article aims at improving the accuracy of the fields in this region by finding the currents induced on the nonilluminated part of the object, where the classical PO assumes zero currents. The proposed approach reformulates the initial problem using equivalent currents over a domain surrounding the object. The equivalent currents then act as new sources that induce electrical currents computed by the classical PO formulation. The computation of the equivalent problem is accelerated using the multipole expansion of Green's function, including appropriate singularity extraction in the very near field. This approach provides an error that is significantly lower in the forward direction than the classical PO formulation. The principles of this new approach are presented and validated for the 2-D scenarios.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2020.3008669</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0902-4565</orcidid><orcidid>https://orcid.org/0000-0002-8294-1001</orcidid><orcidid>https://orcid.org/0000-0002-3867-0662</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2021-01, Vol.69 (1), p.417-428
issn 0018-926X
1558-2221
language eng
recordid cdi_crossref_primary_10_1109_TAP_2020_3008669
source IEEE Electronic Library (IEL)
subjects Bistatic radar cross section (RCS)
Complexity theory
Computation
Equivalence
equivalence theorem
Estimation
fast multipole method (FMM)
Forward scattering
magnetic-field integral equation (MFIE)
Method of moments
Multipoles
Optical surface waves
Physical optics
physical optics (PO)
Scattering
shadowing
Two dimensional displays
title Improved Physical Optics Computation Near the Forward Scattering Region: Application to 2-D Scenarios
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Physical%20Optics%20Computation%20Near%20the%20Forward%20Scattering%20Region:%20Application%20to%202-D%20Scenarios&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Pairon,%20Thomas&rft.date=2021-01&rft.volume=69&rft.issue=1&rft.spage=417&rft.epage=428&rft.pages=417-428&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2020.3008669&rft_dat=%3Cproquest_RIE%3E2475959831%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475959831&rft_id=info:pmid/&rft_ieee_id=9142316&rfr_iscdi=true