A Bernoulli-Gaussian Binary Inversion Method for High-Frequency Electromagnetic Imaging of Metallic Reflectors
High-frequency electromagnetic inverse scattering of conductors has many practical applications. Its goal is to reconstruct the shape of conductors from their scattered fields at some distances. When viewed from the pixelated imaging viewpoint, any pixel in the imaging domain is either a conductor o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2020-04, Vol.68 (4), p.3184-3193 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3193 |
---|---|
container_issue | 4 |
container_start_page | 3184 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 68 |
creator | Wang, Fang-Fang Liu, Qing Huo |
description | High-frequency electromagnetic inverse scattering of conductors has many practical applications. Its goal is to reconstruct the shape of conductors from their scattered fields at some distances. When viewed from the pixelated imaging viewpoint, any pixel in the imaging domain is either a conductor or background (air); thus such an inverse scattering problem has binary solutions for all pixels. Under the high-frequency physical optics (PO) approximation, the scattered field is formulated as a linear problem in terms of a local binary shape function. A binary inversion method is proposed for the detection and shape reconstruction of a flat PEC reflector from high-frequency scattered field measurements. To exploit the underlying binary structure, a Bernoulli-Gaussian (BG) prior model is employed to perform a binary enforcement mechanism. This binary enforcement mechanism can push each pixel of the inversion domain to have a value equal to either zero or one. Then, the damped generalized approximate message passing (GAMP) is integrated with the proposed prior model to address the binary linear inverse problem from the Bayesian inference perspective. Numerical examples are presented to demonstrate the effectiveness and robustness of the proposed BG Binary Inversion method. The performance improvement of the proposed method is attributed to the exploitation of the binary prior information of the solution and GAMP technique. |
doi_str_mv | 10.1109/TAP.2019.2952005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2019_2952005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8897144</ieee_id><sourcerecordid>2388106534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-fb99d0bb15f62e0630f6e4520615c2864a4a00c91fa840030d54602e5d4545323</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89ZJNlmTY1v6BRVFKnhb0t2kTWmTmuwK_e_N0uJpZuD3ZuY9hB4JDAgB-bIafgwoEDmgklMAfoV6hHORUUrJNeoBEJFJWnzforsYd2lkgrEeckM80sH5dr-32Uy1MVrl8Mg6FU544X51iNY7_Kabra-x8QHP7WabTYP-abWrTniy11UT_EFtnG5shReps26DvelEKq2t8Kc2HeVDvEc3Ru2jfrjUPvqaTlbjebZ8ny3Gw2VWUUmazKylrGG9JtwUVEORgyk0S74KwisqCqaYAqgkMUowgBxqzgqgmteMM57TvI-ez3uPwadHY1PufBtcOlnSXAgCBc9ZouBMVcHHGLQpj8EekvOSQNmlWqZUyy7V8pJqkjydJVZr_Y8LIV8JY_kf4ARyvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388106534</pqid></control><display><type>article</type><title>A Bernoulli-Gaussian Binary Inversion Method for High-Frequency Electromagnetic Imaging of Metallic Reflectors</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Fang-Fang ; Liu, Qing Huo</creator><creatorcontrib>Wang, Fang-Fang ; Liu, Qing Huo</creatorcontrib><description>High-frequency electromagnetic inverse scattering of conductors has many practical applications. Its goal is to reconstruct the shape of conductors from their scattered fields at some distances. When viewed from the pixelated imaging viewpoint, any pixel in the imaging domain is either a conductor or background (air); thus such an inverse scattering problem has binary solutions for all pixels. Under the high-frequency physical optics (PO) approximation, the scattered field is formulated as a linear problem in terms of a local binary shape function. A binary inversion method is proposed for the detection and shape reconstruction of a flat PEC reflector from high-frequency scattered field measurements. To exploit the underlying binary structure, a Bernoulli-Gaussian (BG) prior model is employed to perform a binary enforcement mechanism. This binary enforcement mechanism can push each pixel of the inversion domain to have a value equal to either zero or one. Then, the damped generalized approximate message passing (GAMP) is integrated with the proposed prior model to address the binary linear inverse problem from the Bayesian inference perspective. Numerical examples are presented to demonstrate the effectiveness and robustness of the proposed BG Binary Inversion method. The performance improvement of the proposed method is attributed to the exploitation of the binary prior information of the solution and GAMP technique.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2019.2952005</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bayes methods ; Bayesian analysis ; Bayesian inference ; Bernoulli–Gaussian (BG) prior model ; Conductors ; Domains ; Electromagnetic scattering ; Electromagnetics ; Image reconstruction ; Imaging ; Inverse problems ; Inverse scattering ; local shape function (LSF) ; Message passing ; Physical optics ; physics optics (PO) ; Pixels ; Reflectors ; Robustness (mathematics) ; Shape ; Shape functions ; Statistical inference</subject><ispartof>IEEE transactions on antennas and propagation, 2020-04, Vol.68 (4), p.3184-3193</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-fb99d0bb15f62e0630f6e4520615c2864a4a00c91fa840030d54602e5d4545323</citedby><cites>FETCH-LOGICAL-c291t-fb99d0bb15f62e0630f6e4520615c2864a4a00c91fa840030d54602e5d4545323</cites><orcidid>0000-0001-7678-5711 ; 0000-0001-5286-4423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8897144$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8897144$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Fang-Fang</creatorcontrib><creatorcontrib>Liu, Qing Huo</creatorcontrib><title>A Bernoulli-Gaussian Binary Inversion Method for High-Frequency Electromagnetic Imaging of Metallic Reflectors</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>High-frequency electromagnetic inverse scattering of conductors has many practical applications. Its goal is to reconstruct the shape of conductors from their scattered fields at some distances. When viewed from the pixelated imaging viewpoint, any pixel in the imaging domain is either a conductor or background (air); thus such an inverse scattering problem has binary solutions for all pixels. Under the high-frequency physical optics (PO) approximation, the scattered field is formulated as a linear problem in terms of a local binary shape function. A binary inversion method is proposed for the detection and shape reconstruction of a flat PEC reflector from high-frequency scattered field measurements. To exploit the underlying binary structure, a Bernoulli-Gaussian (BG) prior model is employed to perform a binary enforcement mechanism. This binary enforcement mechanism can push each pixel of the inversion domain to have a value equal to either zero or one. Then, the damped generalized approximate message passing (GAMP) is integrated with the proposed prior model to address the binary linear inverse problem from the Bayesian inference perspective. Numerical examples are presented to demonstrate the effectiveness and robustness of the proposed BG Binary Inversion method. The performance improvement of the proposed method is attributed to the exploitation of the binary prior information of the solution and GAMP technique.</description><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Bernoulli–Gaussian (BG) prior model</subject><subject>Conductors</subject><subject>Domains</subject><subject>Electromagnetic scattering</subject><subject>Electromagnetics</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Inverse problems</subject><subject>Inverse scattering</subject><subject>local shape function (LSF)</subject><subject>Message passing</subject><subject>Physical optics</subject><subject>physics optics (PO)</subject><subject>Pixels</subject><subject>Reflectors</subject><subject>Robustness (mathematics)</subject><subject>Shape</subject><subject>Shape functions</subject><subject>Statistical inference</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89ZJNlmTY1v6BRVFKnhb0t2kTWmTmuwK_e_N0uJpZuD3ZuY9hB4JDAgB-bIafgwoEDmgklMAfoV6hHORUUrJNeoBEJFJWnzforsYd2lkgrEeckM80sH5dr-32Uy1MVrl8Mg6FU544X51iNY7_Kabra-x8QHP7WabTYP-abWrTniy11UT_EFtnG5shReps26DvelEKq2t8Kc2HeVDvEc3Ru2jfrjUPvqaTlbjebZ8ny3Gw2VWUUmazKylrGG9JtwUVEORgyk0S74KwisqCqaYAqgkMUowgBxqzgqgmteMM57TvI-ez3uPwadHY1PufBtcOlnSXAgCBc9ZouBMVcHHGLQpj8EekvOSQNmlWqZUyy7V8pJqkjydJVZr_Y8LIV8JY_kf4ARyvA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Wang, Fang-Fang</creator><creator>Liu, Qing Huo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7678-5711</orcidid><orcidid>https://orcid.org/0000-0001-5286-4423</orcidid></search><sort><creationdate>20200401</creationdate><title>A Bernoulli-Gaussian Binary Inversion Method for High-Frequency Electromagnetic Imaging of Metallic Reflectors</title><author>Wang, Fang-Fang ; Liu, Qing Huo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-fb99d0bb15f62e0630f6e4520615c2864a4a00c91fa840030d54602e5d4545323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Bernoulli–Gaussian (BG) prior model</topic><topic>Conductors</topic><topic>Domains</topic><topic>Electromagnetic scattering</topic><topic>Electromagnetics</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Inverse problems</topic><topic>Inverse scattering</topic><topic>local shape function (LSF)</topic><topic>Message passing</topic><topic>Physical optics</topic><topic>physics optics (PO)</topic><topic>Pixels</topic><topic>Reflectors</topic><topic>Robustness (mathematics)</topic><topic>Shape</topic><topic>Shape functions</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Fang-Fang</creatorcontrib><creatorcontrib>Liu, Qing Huo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Fang-Fang</au><au>Liu, Qing Huo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bernoulli-Gaussian Binary Inversion Method for High-Frequency Electromagnetic Imaging of Metallic Reflectors</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>68</volume><issue>4</issue><spage>3184</spage><epage>3193</epage><pages>3184-3193</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>High-frequency electromagnetic inverse scattering of conductors has many practical applications. Its goal is to reconstruct the shape of conductors from their scattered fields at some distances. When viewed from the pixelated imaging viewpoint, any pixel in the imaging domain is either a conductor or background (air); thus such an inverse scattering problem has binary solutions for all pixels. Under the high-frequency physical optics (PO) approximation, the scattered field is formulated as a linear problem in terms of a local binary shape function. A binary inversion method is proposed for the detection and shape reconstruction of a flat PEC reflector from high-frequency scattered field measurements. To exploit the underlying binary structure, a Bernoulli-Gaussian (BG) prior model is employed to perform a binary enforcement mechanism. This binary enforcement mechanism can push each pixel of the inversion domain to have a value equal to either zero or one. Then, the damped generalized approximate message passing (GAMP) is integrated with the proposed prior model to address the binary linear inverse problem from the Bayesian inference perspective. Numerical examples are presented to demonstrate the effectiveness and robustness of the proposed BG Binary Inversion method. The performance improvement of the proposed method is attributed to the exploitation of the binary prior information of the solution and GAMP technique.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2019.2952005</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7678-5711</orcidid><orcidid>https://orcid.org/0000-0001-5286-4423</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2020-04, Vol.68 (4), p.3184-3193 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAP_2019_2952005 |
source | IEEE Electronic Library (IEL) |
subjects | Bayes methods Bayesian analysis Bayesian inference Bernoulli–Gaussian (BG) prior model Conductors Domains Electromagnetic scattering Electromagnetics Image reconstruction Imaging Inverse problems Inverse scattering local shape function (LSF) Message passing Physical optics physics optics (PO) Pixels Reflectors Robustness (mathematics) Shape Shape functions Statistical inference |
title | A Bernoulli-Gaussian Binary Inversion Method for High-Frequency Electromagnetic Imaging of Metallic Reflectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A18%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bernoulli-Gaussian%20Binary%20Inversion%20Method%20for%20High-Frequency%20Electromagnetic%20Imaging%20of%20Metallic%20Reflectors&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Wang,%20Fang-Fang&rft.date=2020-04-01&rft.volume=68&rft.issue=4&rft.spage=3184&rft.epage=3193&rft.pages=3184-3193&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2019.2952005&rft_dat=%3Cproquest_RIE%3E2388106534%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2388106534&rft_id=info:pmid/&rft_ieee_id=8897144&rfr_iscdi=true |