A Bernoulli-Gaussian Binary Inversion Method for High-Frequency Electromagnetic Imaging of Metallic Reflectors

High-frequency electromagnetic inverse scattering of conductors has many practical applications. Its goal is to reconstruct the shape of conductors from their scattered fields at some distances. When viewed from the pixelated imaging viewpoint, any pixel in the imaging domain is either a conductor o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2020-04, Vol.68 (4), p.3184-3193
Hauptverfasser: Wang, Fang-Fang, Liu, Qing Huo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3193
container_issue 4
container_start_page 3184
container_title IEEE transactions on antennas and propagation
container_volume 68
creator Wang, Fang-Fang
Liu, Qing Huo
description High-frequency electromagnetic inverse scattering of conductors has many practical applications. Its goal is to reconstruct the shape of conductors from their scattered fields at some distances. When viewed from the pixelated imaging viewpoint, any pixel in the imaging domain is either a conductor or background (air); thus such an inverse scattering problem has binary solutions for all pixels. Under the high-frequency physical optics (PO) approximation, the scattered field is formulated as a linear problem in terms of a local binary shape function. A binary inversion method is proposed for the detection and shape reconstruction of a flat PEC reflector from high-frequency scattered field measurements. To exploit the underlying binary structure, a Bernoulli-Gaussian (BG) prior model is employed to perform a binary enforcement mechanism. This binary enforcement mechanism can push each pixel of the inversion domain to have a value equal to either zero or one. Then, the damped generalized approximate message passing (GAMP) is integrated with the proposed prior model to address the binary linear inverse problem from the Bayesian inference perspective. Numerical examples are presented to demonstrate the effectiveness and robustness of the proposed BG Binary Inversion method. The performance improvement of the proposed method is attributed to the exploitation of the binary prior information of the solution and GAMP technique.
doi_str_mv 10.1109/TAP.2019.2952005
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2019_2952005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8897144</ieee_id><sourcerecordid>2388106534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-fb99d0bb15f62e0630f6e4520615c2864a4a00c91fa840030d54602e5d4545323</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89ZJNlmTY1v6BRVFKnhb0t2kTWmTmuwK_e_N0uJpZuD3ZuY9hB4JDAgB-bIafgwoEDmgklMAfoV6hHORUUrJNeoBEJFJWnzforsYd2lkgrEeckM80sH5dr-32Uy1MVrl8Mg6FU544X51iNY7_Kabra-x8QHP7WabTYP-abWrTniy11UT_EFtnG5shReps26DvelEKq2t8Kc2HeVDvEc3Ru2jfrjUPvqaTlbjebZ8ny3Gw2VWUUmazKylrGG9JtwUVEORgyk0S74KwisqCqaYAqgkMUowgBxqzgqgmteMM57TvI-ez3uPwadHY1PufBtcOlnSXAgCBc9ZouBMVcHHGLQpj8EekvOSQNmlWqZUyy7V8pJqkjydJVZr_Y8LIV8JY_kf4ARyvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388106534</pqid></control><display><type>article</type><title>A Bernoulli-Gaussian Binary Inversion Method for High-Frequency Electromagnetic Imaging of Metallic Reflectors</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Fang-Fang ; Liu, Qing Huo</creator><creatorcontrib>Wang, Fang-Fang ; Liu, Qing Huo</creatorcontrib><description>High-frequency electromagnetic inverse scattering of conductors has many practical applications. Its goal is to reconstruct the shape of conductors from their scattered fields at some distances. When viewed from the pixelated imaging viewpoint, any pixel in the imaging domain is either a conductor or background (air); thus such an inverse scattering problem has binary solutions for all pixels. Under the high-frequency physical optics (PO) approximation, the scattered field is formulated as a linear problem in terms of a local binary shape function. A binary inversion method is proposed for the detection and shape reconstruction of a flat PEC reflector from high-frequency scattered field measurements. To exploit the underlying binary structure, a Bernoulli-Gaussian (BG) prior model is employed to perform a binary enforcement mechanism. This binary enforcement mechanism can push each pixel of the inversion domain to have a value equal to either zero or one. Then, the damped generalized approximate message passing (GAMP) is integrated with the proposed prior model to address the binary linear inverse problem from the Bayesian inference perspective. Numerical examples are presented to demonstrate the effectiveness and robustness of the proposed BG Binary Inversion method. The performance improvement of the proposed method is attributed to the exploitation of the binary prior information of the solution and GAMP technique.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2019.2952005</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bayes methods ; Bayesian analysis ; Bayesian inference ; Bernoulli–Gaussian (BG) prior model ; Conductors ; Domains ; Electromagnetic scattering ; Electromagnetics ; Image reconstruction ; Imaging ; Inverse problems ; Inverse scattering ; local shape function (LSF) ; Message passing ; Physical optics ; physics optics (PO) ; Pixels ; Reflectors ; Robustness (mathematics) ; Shape ; Shape functions ; Statistical inference</subject><ispartof>IEEE transactions on antennas and propagation, 2020-04, Vol.68 (4), p.3184-3193</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-fb99d0bb15f62e0630f6e4520615c2864a4a00c91fa840030d54602e5d4545323</citedby><cites>FETCH-LOGICAL-c291t-fb99d0bb15f62e0630f6e4520615c2864a4a00c91fa840030d54602e5d4545323</cites><orcidid>0000-0001-7678-5711 ; 0000-0001-5286-4423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8897144$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8897144$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Fang-Fang</creatorcontrib><creatorcontrib>Liu, Qing Huo</creatorcontrib><title>A Bernoulli-Gaussian Binary Inversion Method for High-Frequency Electromagnetic Imaging of Metallic Reflectors</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>High-frequency electromagnetic inverse scattering of conductors has many practical applications. Its goal is to reconstruct the shape of conductors from their scattered fields at some distances. When viewed from the pixelated imaging viewpoint, any pixel in the imaging domain is either a conductor or background (air); thus such an inverse scattering problem has binary solutions for all pixels. Under the high-frequency physical optics (PO) approximation, the scattered field is formulated as a linear problem in terms of a local binary shape function. A binary inversion method is proposed for the detection and shape reconstruction of a flat PEC reflector from high-frequency scattered field measurements. To exploit the underlying binary structure, a Bernoulli-Gaussian (BG) prior model is employed to perform a binary enforcement mechanism. This binary enforcement mechanism can push each pixel of the inversion domain to have a value equal to either zero or one. Then, the damped generalized approximate message passing (GAMP) is integrated with the proposed prior model to address the binary linear inverse problem from the Bayesian inference perspective. Numerical examples are presented to demonstrate the effectiveness and robustness of the proposed BG Binary Inversion method. The performance improvement of the proposed method is attributed to the exploitation of the binary prior information of the solution and GAMP technique.</description><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Bernoulli–Gaussian (BG) prior model</subject><subject>Conductors</subject><subject>Domains</subject><subject>Electromagnetic scattering</subject><subject>Electromagnetics</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Inverse problems</subject><subject>Inverse scattering</subject><subject>local shape function (LSF)</subject><subject>Message passing</subject><subject>Physical optics</subject><subject>physics optics (PO)</subject><subject>Pixels</subject><subject>Reflectors</subject><subject>Robustness (mathematics)</subject><subject>Shape</subject><subject>Shape functions</subject><subject>Statistical inference</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89ZJNlmTY1v6BRVFKnhb0t2kTWmTmuwK_e_N0uJpZuD3ZuY9hB4JDAgB-bIafgwoEDmgklMAfoV6hHORUUrJNeoBEJFJWnzforsYd2lkgrEeckM80sH5dr-32Uy1MVrl8Mg6FU544X51iNY7_Kabra-x8QHP7WabTYP-abWrTniy11UT_EFtnG5shReps26DvelEKq2t8Kc2HeVDvEc3Ru2jfrjUPvqaTlbjebZ8ny3Gw2VWUUmazKylrGG9JtwUVEORgyk0S74KwisqCqaYAqgkMUowgBxqzgqgmteMM57TvI-ez3uPwadHY1PufBtcOlnSXAgCBc9ZouBMVcHHGLQpj8EekvOSQNmlWqZUyy7V8pJqkjydJVZr_Y8LIV8JY_kf4ARyvA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Wang, Fang-Fang</creator><creator>Liu, Qing Huo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7678-5711</orcidid><orcidid>https://orcid.org/0000-0001-5286-4423</orcidid></search><sort><creationdate>20200401</creationdate><title>A Bernoulli-Gaussian Binary Inversion Method for High-Frequency Electromagnetic Imaging of Metallic Reflectors</title><author>Wang, Fang-Fang ; Liu, Qing Huo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-fb99d0bb15f62e0630f6e4520615c2864a4a00c91fa840030d54602e5d4545323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Bernoulli–Gaussian (BG) prior model</topic><topic>Conductors</topic><topic>Domains</topic><topic>Electromagnetic scattering</topic><topic>Electromagnetics</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Inverse problems</topic><topic>Inverse scattering</topic><topic>local shape function (LSF)</topic><topic>Message passing</topic><topic>Physical optics</topic><topic>physics optics (PO)</topic><topic>Pixels</topic><topic>Reflectors</topic><topic>Robustness (mathematics)</topic><topic>Shape</topic><topic>Shape functions</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Fang-Fang</creatorcontrib><creatorcontrib>Liu, Qing Huo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Fang-Fang</au><au>Liu, Qing Huo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bernoulli-Gaussian Binary Inversion Method for High-Frequency Electromagnetic Imaging of Metallic Reflectors</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>68</volume><issue>4</issue><spage>3184</spage><epage>3193</epage><pages>3184-3193</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>High-frequency electromagnetic inverse scattering of conductors has many practical applications. Its goal is to reconstruct the shape of conductors from their scattered fields at some distances. When viewed from the pixelated imaging viewpoint, any pixel in the imaging domain is either a conductor or background (air); thus such an inverse scattering problem has binary solutions for all pixels. Under the high-frequency physical optics (PO) approximation, the scattered field is formulated as a linear problem in terms of a local binary shape function. A binary inversion method is proposed for the detection and shape reconstruction of a flat PEC reflector from high-frequency scattered field measurements. To exploit the underlying binary structure, a Bernoulli-Gaussian (BG) prior model is employed to perform a binary enforcement mechanism. This binary enforcement mechanism can push each pixel of the inversion domain to have a value equal to either zero or one. Then, the damped generalized approximate message passing (GAMP) is integrated with the proposed prior model to address the binary linear inverse problem from the Bayesian inference perspective. Numerical examples are presented to demonstrate the effectiveness and robustness of the proposed BG Binary Inversion method. The performance improvement of the proposed method is attributed to the exploitation of the binary prior information of the solution and GAMP technique.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2019.2952005</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7678-5711</orcidid><orcidid>https://orcid.org/0000-0001-5286-4423</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2020-04, Vol.68 (4), p.3184-3193
issn 0018-926X
1558-2221
language eng
recordid cdi_crossref_primary_10_1109_TAP_2019_2952005
source IEEE Electronic Library (IEL)
subjects Bayes methods
Bayesian analysis
Bayesian inference
Bernoulli–Gaussian (BG) prior model
Conductors
Domains
Electromagnetic scattering
Electromagnetics
Image reconstruction
Imaging
Inverse problems
Inverse scattering
local shape function (LSF)
Message passing
Physical optics
physics optics (PO)
Pixels
Reflectors
Robustness (mathematics)
Shape
Shape functions
Statistical inference
title A Bernoulli-Gaussian Binary Inversion Method for High-Frequency Electromagnetic Imaging of Metallic Reflectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A18%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bernoulli-Gaussian%20Binary%20Inversion%20Method%20for%20High-Frequency%20Electromagnetic%20Imaging%20of%20Metallic%20Reflectors&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Wang,%20Fang-Fang&rft.date=2020-04-01&rft.volume=68&rft.issue=4&rft.spage=3184&rft.epage=3193&rft.pages=3184-3193&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2019.2952005&rft_dat=%3Cproquest_RIE%3E2388106534%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2388106534&rft_id=info:pmid/&rft_ieee_id=8897144&rfr_iscdi=true