An Optimized One-Step Leapfrog HIE-FDTD Method With the Artificial Anisotropy Parameters
By introducing the artificial anisotropy (AA) parameters, a 3-D one-step leapfrog hybrid implicit-explicit finite-difference time domain (HIE-FDTD) method is proposed, which can reduce the numerical dispersion error without increasing the computational cost. The formulation of the AA one-step leapfr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2020-02, Vol.68 (2), p.1198-1203 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1203 |
---|---|
container_issue | 2 |
container_start_page | 1198 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 68 |
creator | Kong, Yong-Dan Zhang, Chu-Bin Chu, Qing-Xin |
description | By introducing the artificial anisotropy (AA) parameters, a 3-D one-step leapfrog hybrid implicit-explicit finite-difference time domain (HIE-FDTD) method is proposed, which can reduce the numerical dispersion error without increasing the computational cost. The formulation of the AA one-step leapfrog HIE-FDTD method is obtained by introducing the relative permittivity and permeability tensors in the original one-step leapfrog HIE-FDTD method. The Courant-Friedrichs-Lewy (CFL) stability condition of the AA one-step leapfrog HIE-FDTD method is close to that of the original one-step leapfrog HIE-FDTD method. In addition, the proposed HIE-FDTD method has lower numerical dispersion error and higher calculation accuracy than that of the one-step leapfrog HIE-FDTD method. Finally, to testify the characteristics of the proposed HIE-FDTD method, numerical simulation experiments are given. |
doi_str_mv | 10.1109/TAP.2019.2940565 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2019_2940565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8839690</ieee_id><sourcerecordid>2350154805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-ef805c1ef97ca696164a317805d5ec2abbe0e44ee9917f8e1ba5e6e52ced91c43</originalsourceid><addsrcrecordid>eNo9kEFrAjEQRkNpodb2Xugl0PPaTDZZN8dFaxUsCrXUW4hxtkZ0d5vEg_31XVF6GmZ43zfwCHkE1gNg6mVRzHucgepxJZjM5BXpgJR5wjmHa9JhDPJE8Wx5S-5C2LaryIXokGVR0VkT3d794prOKkw-IjZ0iqYpff1Nx5PXZDRcDOk7xk29pl8ubmjcIC18dKWzzuxoUblQR183Rzo33uwxog_35KY0u4APl9kln6PXxWCcTGdvk0ExTSxXEBMscyYtYKn61mQqg0yYFPrtcS3RcrNaIUMhEJWCfpkjrIzEDCW3uFZgRdolz-fextc_BwxRb-uDr9qXmqeSgRRtV0uxM2V9HYLHUjfe7Y0_amD65E-3_vTJn774ayNP54hDxH88z1OVKZb-ATsPa1o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350154805</pqid></control><display><type>article</type><title>An Optimized One-Step Leapfrog HIE-FDTD Method With the Artificial Anisotropy Parameters</title><source>IEEE Xplore</source><creator>Kong, Yong-Dan ; Zhang, Chu-Bin ; Chu, Qing-Xin</creator><creatorcontrib>Kong, Yong-Dan ; Zhang, Chu-Bin ; Chu, Qing-Xin</creatorcontrib><description>By introducing the artificial anisotropy (AA) parameters, a 3-D one-step leapfrog hybrid implicit-explicit finite-difference time domain (HIE-FDTD) method is proposed, which can reduce the numerical dispersion error without increasing the computational cost. The formulation of the AA one-step leapfrog HIE-FDTD method is obtained by introducing the relative permittivity and permeability tensors in the original one-step leapfrog HIE-FDTD method. The Courant-Friedrichs-Lewy (CFL) stability condition of the AA one-step leapfrog HIE-FDTD method is close to that of the original one-step leapfrog HIE-FDTD method. In addition, the proposed HIE-FDTD method has lower numerical dispersion error and higher calculation accuracy than that of the one-step leapfrog HIE-FDTD method. Finally, to testify the characteristics of the proposed HIE-FDTD method, numerical simulation experiments are given.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2019.2940565</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anisotropic magnetoresistance ; Anisotropy ; Artificial anisotropy (AA) ; Computer simulation ; Coplanar waveguides ; Dispersion ; Finite difference method ; Finite difference methods ; Finite difference time domain method ; finite-difference time domain (FDTD) ; hybrid implicit–explicit (HIE) ; numerical dispersion ; Numerical stability ; one-step leapfrog ; Parameters ; Permittivity ; Stability analysis ; Tensors ; Time domain analysis</subject><ispartof>IEEE transactions on antennas and propagation, 2020-02, Vol.68 (2), p.1198-1203</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-ef805c1ef97ca696164a317805d5ec2abbe0e44ee9917f8e1ba5e6e52ced91c43</citedby><cites>FETCH-LOGICAL-c291t-ef805c1ef97ca696164a317805d5ec2abbe0e44ee9917f8e1ba5e6e52ced91c43</cites><orcidid>0000-0002-5807-0365 ; 0000-0003-2862-4790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8839690$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8839690$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kong, Yong-Dan</creatorcontrib><creatorcontrib>Zhang, Chu-Bin</creatorcontrib><creatorcontrib>Chu, Qing-Xin</creatorcontrib><title>An Optimized One-Step Leapfrog HIE-FDTD Method With the Artificial Anisotropy Parameters</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>By introducing the artificial anisotropy (AA) parameters, a 3-D one-step leapfrog hybrid implicit-explicit finite-difference time domain (HIE-FDTD) method is proposed, which can reduce the numerical dispersion error without increasing the computational cost. The formulation of the AA one-step leapfrog HIE-FDTD method is obtained by introducing the relative permittivity and permeability tensors in the original one-step leapfrog HIE-FDTD method. The Courant-Friedrichs-Lewy (CFL) stability condition of the AA one-step leapfrog HIE-FDTD method is close to that of the original one-step leapfrog HIE-FDTD method. In addition, the proposed HIE-FDTD method has lower numerical dispersion error and higher calculation accuracy than that of the one-step leapfrog HIE-FDTD method. Finally, to testify the characteristics of the proposed HIE-FDTD method, numerical simulation experiments are given.</description><subject>Anisotropic magnetoresistance</subject><subject>Anisotropy</subject><subject>Artificial anisotropy (AA)</subject><subject>Computer simulation</subject><subject>Coplanar waveguides</subject><subject>Dispersion</subject><subject>Finite difference method</subject><subject>Finite difference methods</subject><subject>Finite difference time domain method</subject><subject>finite-difference time domain (FDTD)</subject><subject>hybrid implicit–explicit (HIE)</subject><subject>numerical dispersion</subject><subject>Numerical stability</subject><subject>one-step leapfrog</subject><subject>Parameters</subject><subject>Permittivity</subject><subject>Stability analysis</subject><subject>Tensors</subject><subject>Time domain analysis</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFrAjEQRkNpodb2Xugl0PPaTDZZN8dFaxUsCrXUW4hxtkZ0d5vEg_31XVF6GmZ43zfwCHkE1gNg6mVRzHucgepxJZjM5BXpgJR5wjmHa9JhDPJE8Wx5S-5C2LaryIXokGVR0VkT3d794prOKkw-IjZ0iqYpff1Nx5PXZDRcDOk7xk29pl8ubmjcIC18dKWzzuxoUblQR183Rzo33uwxog_35KY0u4APl9kln6PXxWCcTGdvk0ExTSxXEBMscyYtYKn61mQqg0yYFPrtcS3RcrNaIUMhEJWCfpkjrIzEDCW3uFZgRdolz-fextc_BwxRb-uDr9qXmqeSgRRtV0uxM2V9HYLHUjfe7Y0_amD65E-3_vTJn774ayNP54hDxH88z1OVKZb-ATsPa1o</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Kong, Yong-Dan</creator><creator>Zhang, Chu-Bin</creator><creator>Chu, Qing-Xin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5807-0365</orcidid><orcidid>https://orcid.org/0000-0003-2862-4790</orcidid></search><sort><creationdate>20200201</creationdate><title>An Optimized One-Step Leapfrog HIE-FDTD Method With the Artificial Anisotropy Parameters</title><author>Kong, Yong-Dan ; Zhang, Chu-Bin ; Chu, Qing-Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-ef805c1ef97ca696164a317805d5ec2abbe0e44ee9917f8e1ba5e6e52ced91c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropic magnetoresistance</topic><topic>Anisotropy</topic><topic>Artificial anisotropy (AA)</topic><topic>Computer simulation</topic><topic>Coplanar waveguides</topic><topic>Dispersion</topic><topic>Finite difference method</topic><topic>Finite difference methods</topic><topic>Finite difference time domain method</topic><topic>finite-difference time domain (FDTD)</topic><topic>hybrid implicit–explicit (HIE)</topic><topic>numerical dispersion</topic><topic>Numerical stability</topic><topic>one-step leapfrog</topic><topic>Parameters</topic><topic>Permittivity</topic><topic>Stability analysis</topic><topic>Tensors</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Yong-Dan</creatorcontrib><creatorcontrib>Zhang, Chu-Bin</creatorcontrib><creatorcontrib>Chu, Qing-Xin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kong, Yong-Dan</au><au>Zhang, Chu-Bin</au><au>Chu, Qing-Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Optimized One-Step Leapfrog HIE-FDTD Method With the Artificial Anisotropy Parameters</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>68</volume><issue>2</issue><spage>1198</spage><epage>1203</epage><pages>1198-1203</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>By introducing the artificial anisotropy (AA) parameters, a 3-D one-step leapfrog hybrid implicit-explicit finite-difference time domain (HIE-FDTD) method is proposed, which can reduce the numerical dispersion error without increasing the computational cost. The formulation of the AA one-step leapfrog HIE-FDTD method is obtained by introducing the relative permittivity and permeability tensors in the original one-step leapfrog HIE-FDTD method. The Courant-Friedrichs-Lewy (CFL) stability condition of the AA one-step leapfrog HIE-FDTD method is close to that of the original one-step leapfrog HIE-FDTD method. In addition, the proposed HIE-FDTD method has lower numerical dispersion error and higher calculation accuracy than that of the one-step leapfrog HIE-FDTD method. Finally, to testify the characteristics of the proposed HIE-FDTD method, numerical simulation experiments are given.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2019.2940565</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5807-0365</orcidid><orcidid>https://orcid.org/0000-0003-2862-4790</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2020-02, Vol.68 (2), p.1198-1203 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAP_2019_2940565 |
source | IEEE Xplore |
subjects | Anisotropic magnetoresistance Anisotropy Artificial anisotropy (AA) Computer simulation Coplanar waveguides Dispersion Finite difference method Finite difference methods Finite difference time domain method finite-difference time domain (FDTD) hybrid implicit–explicit (HIE) numerical dispersion Numerical stability one-step leapfrog Parameters Permittivity Stability analysis Tensors Time domain analysis |
title | An Optimized One-Step Leapfrog HIE-FDTD Method With the Artificial Anisotropy Parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A54%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Optimized%20One-Step%20Leapfrog%20HIE-FDTD%20Method%20With%20the%20Artificial%20Anisotropy%20Parameters&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Kong,%20Yong-Dan&rft.date=2020-02-01&rft.volume=68&rft.issue=2&rft.spage=1198&rft.epage=1203&rft.pages=1198-1203&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2019.2940565&rft_dat=%3Cproquest_RIE%3E2350154805%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350154805&rft_id=info:pmid/&rft_ieee_id=8839690&rfr_iscdi=true |