Artificial Neural Network Optimal Modeling and Optimization of UAV Measurements for Mobile Communications Using the L-SHADE Algorithm

Channel modeling of wireless communications from unmanned aerial vehicles (UAVs) is an emerging research challenge. In this paper, we propose a solution to this issue by applying a new framework for the prediction of received signal strength (RSS) in mobile communications based on artificial neural...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2019-06, Vol.67 (6), p.4022-4031
Hauptverfasser: Goudos, Sotirios K., Tsoulos, George V., Athanasiadou, Georgia, Batistatos, Michael C., Zarbouti, Dimitra, Psannis, Kostas E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4031
container_issue 6
container_start_page 4022
container_title IEEE transactions on antennas and propagation
container_volume 67
creator Goudos, Sotirios K.
Tsoulos, George V.
Athanasiadou, Georgia
Batistatos, Michael C.
Zarbouti, Dimitra
Psannis, Kostas E.
description Channel modeling of wireless communications from unmanned aerial vehicles (UAVs) is an emerging research challenge. In this paper, we propose a solution to this issue by applying a new framework for the prediction of received signal strength (RSS) in mobile communications based on artificial neural networks (ANNs). The experimental data measurements are taken with a UAV at different altitudes. We apply several evolutionary algorithms (EAs) in conjunction with the Levenberg-Marquardt (LM) backpropagation algorithm in order to train different ANNs and in particular the L-SHADE algorithm, which self-adapts control parameters and dynamically adjusts population size. Five new hybrid training methods are designed by combining LM with self-adaptive differential evolution (DE) strategies. These new training methods obtain better performance to ANN weight optimization than the original LM method. The received results are compared with the real values using representative ANN performance indices and exhibit satisfactory accuracy.
doi_str_mv 10.1109/TAP.2019.2905665
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2019_2905665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8668525</ieee_id><sourcerecordid>2235825787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-b32f404f8fcc71e5cf2c44547b48c2f81202d3dbe6643ac4eeb7785a9df445123</originalsourceid><addsrcrecordid>eNo9kEtLxDAURoMoOD72gpuA645JmrTpsoyPEcYH6Ii70qY3Gm2bMUkR3fu_zTji6vJdzncvHISOKJlSSorTh_JuyggtpqwgIsvEFppQIWTCGKPbaEIIlUnBsqddtOf9a4xccj5B36ULRhtl6g7fwOh-R_iw7g3froLpY762LXRmeMb10G6W5qsOxg7YarwsH_E11H500MMQPNbWxUZjOsAz2_fjYNQv7PHSr4-EF8CL5H5enp3jsnu2zoSX_gDt6LrzcPg399Hy4vxhNk8Wt5dXs3KRqFTkIWlSpjnhWmqlcgpCaaY4FzxvuFRMS8oIa9O2gSzjaa04QJPnUtRFqyNGWbqPTjZ3V86-j-BD9WpHN8SXFWOpkEzkMo8U2VDKWe8d6Grlogn3WVFSrWVXUXa1ll39yY6V403FAMA_LrNMCibSH74FfA4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235825787</pqid></control><display><type>article</type><title>Artificial Neural Network Optimal Modeling and Optimization of UAV Measurements for Mobile Communications Using the L-SHADE Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Goudos, Sotirios K. ; Tsoulos, George V. ; Athanasiadou, Georgia ; Batistatos, Michael C. ; Zarbouti, Dimitra ; Psannis, Kostas E.</creator><creatorcontrib>Goudos, Sotirios K. ; Tsoulos, George V. ; Athanasiadou, Georgia ; Batistatos, Michael C. ; Zarbouti, Dimitra ; Psannis, Kostas E.</creatorcontrib><description>Channel modeling of wireless communications from unmanned aerial vehicles (UAVs) is an emerging research challenge. In this paper, we propose a solution to this issue by applying a new framework for the prediction of received signal strength (RSS) in mobile communications based on artificial neural networks (ANNs). The experimental data measurements are taken with a UAV at different altitudes. We apply several evolutionary algorithms (EAs) in conjunction with the Levenberg-Marquardt (LM) backpropagation algorithm in order to train different ANNs and in particular the L-SHADE algorithm, which self-adapts control parameters and dynamically adjusts population size. Five new hybrid training methods are designed by combining LM with self-adaptive differential evolution (DE) strategies. These new training methods obtain better performance to ANN weight optimization than the original LM method. The received results are compared with the real values using representative ANN performance indices and exhibit satisfactory accuracy.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2019.2905665</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Antenna measurements ; Area measurement ; Artificial neural network (ANN) ; Artificial neural networks ; Back propagation ; cellular communications ; differential evolution (DE) ; Evolutionary algorithms ; Evolutionary computation ; Frequency measurement ; Fuel consumption ; Long Term Evolution ; Mobile communication systems ; Modelling ; Neural networks ; Optimization ; optimization methods ; Performance indices ; Power measurement ; Signal strength ; Software ; Training ; unmanned aerial vehicle (UAV) ; Unmanned aerial vehicles ; Wireless communications</subject><ispartof>IEEE transactions on antennas and propagation, 2019-06, Vol.67 (6), p.4022-4031</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-b32f404f8fcc71e5cf2c44547b48c2f81202d3dbe6643ac4eeb7785a9df445123</citedby><cites>FETCH-LOGICAL-c357t-b32f404f8fcc71e5cf2c44547b48c2f81202d3dbe6643ac4eeb7785a9df445123</cites><orcidid>0000-0003-0020-6394 ; 0000-0001-5981-5683 ; 0000-0002-9605-4489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8668525$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8668525$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Goudos, Sotirios K.</creatorcontrib><creatorcontrib>Tsoulos, George V.</creatorcontrib><creatorcontrib>Athanasiadou, Georgia</creatorcontrib><creatorcontrib>Batistatos, Michael C.</creatorcontrib><creatorcontrib>Zarbouti, Dimitra</creatorcontrib><creatorcontrib>Psannis, Kostas E.</creatorcontrib><title>Artificial Neural Network Optimal Modeling and Optimization of UAV Measurements for Mobile Communications Using the L-SHADE Algorithm</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Channel modeling of wireless communications from unmanned aerial vehicles (UAVs) is an emerging research challenge. In this paper, we propose a solution to this issue by applying a new framework for the prediction of received signal strength (RSS) in mobile communications based on artificial neural networks (ANNs). The experimental data measurements are taken with a UAV at different altitudes. We apply several evolutionary algorithms (EAs) in conjunction with the Levenberg-Marquardt (LM) backpropagation algorithm in order to train different ANNs and in particular the L-SHADE algorithm, which self-adapts control parameters and dynamically adjusts population size. Five new hybrid training methods are designed by combining LM with self-adaptive differential evolution (DE) strategies. These new training methods obtain better performance to ANN weight optimization than the original LM method. The received results are compared with the real values using representative ANN performance indices and exhibit satisfactory accuracy.</description><subject>Algorithms</subject><subject>Antenna measurements</subject><subject>Area measurement</subject><subject>Artificial neural network (ANN)</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>cellular communications</subject><subject>differential evolution (DE)</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Frequency measurement</subject><subject>Fuel consumption</subject><subject>Long Term Evolution</subject><subject>Mobile communication systems</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>optimization methods</subject><subject>Performance indices</subject><subject>Power measurement</subject><subject>Signal strength</subject><subject>Software</subject><subject>Training</subject><subject>unmanned aerial vehicle (UAV)</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless communications</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLxDAURoMoOD72gpuA645JmrTpsoyPEcYH6Ii70qY3Gm2bMUkR3fu_zTji6vJdzncvHISOKJlSSorTh_JuyggtpqwgIsvEFppQIWTCGKPbaEIIlUnBsqddtOf9a4xccj5B36ULRhtl6g7fwOh-R_iw7g3froLpY762LXRmeMb10G6W5qsOxg7YarwsH_E11H500MMQPNbWxUZjOsAz2_fjYNQv7PHSr4-EF8CL5H5enp3jsnu2zoSX_gDt6LrzcPg399Hy4vxhNk8Wt5dXs3KRqFTkIWlSpjnhWmqlcgpCaaY4FzxvuFRMS8oIa9O2gSzjaa04QJPnUtRFqyNGWbqPTjZ3V86-j-BD9WpHN8SXFWOpkEzkMo8U2VDKWe8d6Grlogn3WVFSrWVXUXa1ll39yY6V403FAMA_LrNMCibSH74FfA4</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Goudos, Sotirios K.</creator><creator>Tsoulos, George V.</creator><creator>Athanasiadou, Georgia</creator><creator>Batistatos, Michael C.</creator><creator>Zarbouti, Dimitra</creator><creator>Psannis, Kostas E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0020-6394</orcidid><orcidid>https://orcid.org/0000-0001-5981-5683</orcidid><orcidid>https://orcid.org/0000-0002-9605-4489</orcidid></search><sort><creationdate>20190601</creationdate><title>Artificial Neural Network Optimal Modeling and Optimization of UAV Measurements for Mobile Communications Using the L-SHADE Algorithm</title><author>Goudos, Sotirios K. ; Tsoulos, George V. ; Athanasiadou, Georgia ; Batistatos, Michael C. ; Zarbouti, Dimitra ; Psannis, Kostas E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-b32f404f8fcc71e5cf2c44547b48c2f81202d3dbe6643ac4eeb7785a9df445123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Antenna measurements</topic><topic>Area measurement</topic><topic>Artificial neural network (ANN)</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>cellular communications</topic><topic>differential evolution (DE)</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Frequency measurement</topic><topic>Fuel consumption</topic><topic>Long Term Evolution</topic><topic>Mobile communication systems</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>optimization methods</topic><topic>Performance indices</topic><topic>Power measurement</topic><topic>Signal strength</topic><topic>Software</topic><topic>Training</topic><topic>unmanned aerial vehicle (UAV)</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goudos, Sotirios K.</creatorcontrib><creatorcontrib>Tsoulos, George V.</creatorcontrib><creatorcontrib>Athanasiadou, Georgia</creatorcontrib><creatorcontrib>Batistatos, Michael C.</creatorcontrib><creatorcontrib>Zarbouti, Dimitra</creatorcontrib><creatorcontrib>Psannis, Kostas E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goudos, Sotirios K.</au><au>Tsoulos, George V.</au><au>Athanasiadou, Georgia</au><au>Batistatos, Michael C.</au><au>Zarbouti, Dimitra</au><au>Psannis, Kostas E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Neural Network Optimal Modeling and Optimization of UAV Measurements for Mobile Communications Using the L-SHADE Algorithm</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>67</volume><issue>6</issue><spage>4022</spage><epage>4031</epage><pages>4022-4031</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Channel modeling of wireless communications from unmanned aerial vehicles (UAVs) is an emerging research challenge. In this paper, we propose a solution to this issue by applying a new framework for the prediction of received signal strength (RSS) in mobile communications based on artificial neural networks (ANNs). The experimental data measurements are taken with a UAV at different altitudes. We apply several evolutionary algorithms (EAs) in conjunction with the Levenberg-Marquardt (LM) backpropagation algorithm in order to train different ANNs and in particular the L-SHADE algorithm, which self-adapts control parameters and dynamically adjusts population size. Five new hybrid training methods are designed by combining LM with self-adaptive differential evolution (DE) strategies. These new training methods obtain better performance to ANN weight optimization than the original LM method. The received results are compared with the real values using representative ANN performance indices and exhibit satisfactory accuracy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2019.2905665</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0020-6394</orcidid><orcidid>https://orcid.org/0000-0001-5981-5683</orcidid><orcidid>https://orcid.org/0000-0002-9605-4489</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2019-06, Vol.67 (6), p.4022-4031
issn 0018-926X
1558-2221
language eng
recordid cdi_crossref_primary_10_1109_TAP_2019_2905665
source IEEE Electronic Library (IEL)
subjects Algorithms
Antenna measurements
Area measurement
Artificial neural network (ANN)
Artificial neural networks
Back propagation
cellular communications
differential evolution (DE)
Evolutionary algorithms
Evolutionary computation
Frequency measurement
Fuel consumption
Long Term Evolution
Mobile communication systems
Modelling
Neural networks
Optimization
optimization methods
Performance indices
Power measurement
Signal strength
Software
Training
unmanned aerial vehicle (UAV)
Unmanned aerial vehicles
Wireless communications
title Artificial Neural Network Optimal Modeling and Optimization of UAV Measurements for Mobile Communications Using the L-SHADE Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T04%3A55%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Neural%20Network%20Optimal%20Modeling%20and%20Optimization%20of%20UAV%20Measurements%20for%20Mobile%20Communications%20Using%20the%20L-SHADE%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Goudos,%20Sotirios%20K.&rft.date=2019-06-01&rft.volume=67&rft.issue=6&rft.spage=4022&rft.epage=4031&rft.pages=4022-4031&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2019.2905665&rft_dat=%3Cproquest_RIE%3E2235825787%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235825787&rft_id=info:pmid/&rft_ieee_id=8668525&rfr_iscdi=true