Artificial Neural Network Optimal Modeling and Optimization of UAV Measurements for Mobile Communications Using the L-SHADE Algorithm
Channel modeling of wireless communications from unmanned aerial vehicles (UAVs) is an emerging research challenge. In this paper, we propose a solution to this issue by applying a new framework for the prediction of received signal strength (RSS) in mobile communications based on artificial neural...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2019-06, Vol.67 (6), p.4022-4031 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4031 |
---|---|
container_issue | 6 |
container_start_page | 4022 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 67 |
creator | Goudos, Sotirios K. Tsoulos, George V. Athanasiadou, Georgia Batistatos, Michael C. Zarbouti, Dimitra Psannis, Kostas E. |
description | Channel modeling of wireless communications from unmanned aerial vehicles (UAVs) is an emerging research challenge. In this paper, we propose a solution to this issue by applying a new framework for the prediction of received signal strength (RSS) in mobile communications based on artificial neural networks (ANNs). The experimental data measurements are taken with a UAV at different altitudes. We apply several evolutionary algorithms (EAs) in conjunction with the Levenberg-Marquardt (LM) backpropagation algorithm in order to train different ANNs and in particular the L-SHADE algorithm, which self-adapts control parameters and dynamically adjusts population size. Five new hybrid training methods are designed by combining LM with self-adaptive differential evolution (DE) strategies. These new training methods obtain better performance to ANN weight optimization than the original LM method. The received results are compared with the real values using representative ANN performance indices and exhibit satisfactory accuracy. |
doi_str_mv | 10.1109/TAP.2019.2905665 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2019_2905665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8668525</ieee_id><sourcerecordid>2235825787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-b32f404f8fcc71e5cf2c44547b48c2f81202d3dbe6643ac4eeb7785a9df445123</originalsourceid><addsrcrecordid>eNo9kEtLxDAURoMoOD72gpuA645JmrTpsoyPEcYH6Ii70qY3Gm2bMUkR3fu_zTji6vJdzncvHISOKJlSSorTh_JuyggtpqwgIsvEFppQIWTCGKPbaEIIlUnBsqddtOf9a4xccj5B36ULRhtl6g7fwOh-R_iw7g3froLpY762LXRmeMb10G6W5qsOxg7YarwsH_E11H500MMQPNbWxUZjOsAz2_fjYNQv7PHSr4-EF8CL5H5enp3jsnu2zoSX_gDt6LrzcPg399Hy4vxhNk8Wt5dXs3KRqFTkIWlSpjnhWmqlcgpCaaY4FzxvuFRMS8oIa9O2gSzjaa04QJPnUtRFqyNGWbqPTjZ3V86-j-BD9WpHN8SXFWOpkEzkMo8U2VDKWe8d6Grlogn3WVFSrWVXUXa1ll39yY6V403FAMA_LrNMCibSH74FfA4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2235825787</pqid></control><display><type>article</type><title>Artificial Neural Network Optimal Modeling and Optimization of UAV Measurements for Mobile Communications Using the L-SHADE Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Goudos, Sotirios K. ; Tsoulos, George V. ; Athanasiadou, Georgia ; Batistatos, Michael C. ; Zarbouti, Dimitra ; Psannis, Kostas E.</creator><creatorcontrib>Goudos, Sotirios K. ; Tsoulos, George V. ; Athanasiadou, Georgia ; Batistatos, Michael C. ; Zarbouti, Dimitra ; Psannis, Kostas E.</creatorcontrib><description>Channel modeling of wireless communications from unmanned aerial vehicles (UAVs) is an emerging research challenge. In this paper, we propose a solution to this issue by applying a new framework for the prediction of received signal strength (RSS) in mobile communications based on artificial neural networks (ANNs). The experimental data measurements are taken with a UAV at different altitudes. We apply several evolutionary algorithms (EAs) in conjunction with the Levenberg-Marquardt (LM) backpropagation algorithm in order to train different ANNs and in particular the L-SHADE algorithm, which self-adapts control parameters and dynamically adjusts population size. Five new hybrid training methods are designed by combining LM with self-adaptive differential evolution (DE) strategies. These new training methods obtain better performance to ANN weight optimization than the original LM method. The received results are compared with the real values using representative ANN performance indices and exhibit satisfactory accuracy.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2019.2905665</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Antenna measurements ; Area measurement ; Artificial neural network (ANN) ; Artificial neural networks ; Back propagation ; cellular communications ; differential evolution (DE) ; Evolutionary algorithms ; Evolutionary computation ; Frequency measurement ; Fuel consumption ; Long Term Evolution ; Mobile communication systems ; Modelling ; Neural networks ; Optimization ; optimization methods ; Performance indices ; Power measurement ; Signal strength ; Software ; Training ; unmanned aerial vehicle (UAV) ; Unmanned aerial vehicles ; Wireless communications</subject><ispartof>IEEE transactions on antennas and propagation, 2019-06, Vol.67 (6), p.4022-4031</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-b32f404f8fcc71e5cf2c44547b48c2f81202d3dbe6643ac4eeb7785a9df445123</citedby><cites>FETCH-LOGICAL-c357t-b32f404f8fcc71e5cf2c44547b48c2f81202d3dbe6643ac4eeb7785a9df445123</cites><orcidid>0000-0003-0020-6394 ; 0000-0001-5981-5683 ; 0000-0002-9605-4489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8668525$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8668525$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Goudos, Sotirios K.</creatorcontrib><creatorcontrib>Tsoulos, George V.</creatorcontrib><creatorcontrib>Athanasiadou, Georgia</creatorcontrib><creatorcontrib>Batistatos, Michael C.</creatorcontrib><creatorcontrib>Zarbouti, Dimitra</creatorcontrib><creatorcontrib>Psannis, Kostas E.</creatorcontrib><title>Artificial Neural Network Optimal Modeling and Optimization of UAV Measurements for Mobile Communications Using the L-SHADE Algorithm</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Channel modeling of wireless communications from unmanned aerial vehicles (UAVs) is an emerging research challenge. In this paper, we propose a solution to this issue by applying a new framework for the prediction of received signal strength (RSS) in mobile communications based on artificial neural networks (ANNs). The experimental data measurements are taken with a UAV at different altitudes. We apply several evolutionary algorithms (EAs) in conjunction with the Levenberg-Marquardt (LM) backpropagation algorithm in order to train different ANNs and in particular the L-SHADE algorithm, which self-adapts control parameters and dynamically adjusts population size. Five new hybrid training methods are designed by combining LM with self-adaptive differential evolution (DE) strategies. These new training methods obtain better performance to ANN weight optimization than the original LM method. The received results are compared with the real values using representative ANN performance indices and exhibit satisfactory accuracy.</description><subject>Algorithms</subject><subject>Antenna measurements</subject><subject>Area measurement</subject><subject>Artificial neural network (ANN)</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>cellular communications</subject><subject>differential evolution (DE)</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Frequency measurement</subject><subject>Fuel consumption</subject><subject>Long Term Evolution</subject><subject>Mobile communication systems</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>optimization methods</subject><subject>Performance indices</subject><subject>Power measurement</subject><subject>Signal strength</subject><subject>Software</subject><subject>Training</subject><subject>unmanned aerial vehicle (UAV)</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless communications</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLxDAURoMoOD72gpuA645JmrTpsoyPEcYH6Ii70qY3Gm2bMUkR3fu_zTji6vJdzncvHISOKJlSSorTh_JuyggtpqwgIsvEFppQIWTCGKPbaEIIlUnBsqddtOf9a4xccj5B36ULRhtl6g7fwOh-R_iw7g3froLpY762LXRmeMb10G6W5qsOxg7YarwsH_E11H500MMQPNbWxUZjOsAz2_fjYNQv7PHSr4-EF8CL5H5enp3jsnu2zoSX_gDt6LrzcPg399Hy4vxhNk8Wt5dXs3KRqFTkIWlSpjnhWmqlcgpCaaY4FzxvuFRMS8oIa9O2gSzjaa04QJPnUtRFqyNGWbqPTjZ3V86-j-BD9WpHN8SXFWOpkEzkMo8U2VDKWe8d6Grlogn3WVFSrWVXUXa1ll39yY6V403FAMA_LrNMCibSH74FfA4</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Goudos, Sotirios K.</creator><creator>Tsoulos, George V.</creator><creator>Athanasiadou, Georgia</creator><creator>Batistatos, Michael C.</creator><creator>Zarbouti, Dimitra</creator><creator>Psannis, Kostas E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0020-6394</orcidid><orcidid>https://orcid.org/0000-0001-5981-5683</orcidid><orcidid>https://orcid.org/0000-0002-9605-4489</orcidid></search><sort><creationdate>20190601</creationdate><title>Artificial Neural Network Optimal Modeling and Optimization of UAV Measurements for Mobile Communications Using the L-SHADE Algorithm</title><author>Goudos, Sotirios K. ; Tsoulos, George V. ; Athanasiadou, Georgia ; Batistatos, Michael C. ; Zarbouti, Dimitra ; Psannis, Kostas E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-b32f404f8fcc71e5cf2c44547b48c2f81202d3dbe6643ac4eeb7785a9df445123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Antenna measurements</topic><topic>Area measurement</topic><topic>Artificial neural network (ANN)</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>cellular communications</topic><topic>differential evolution (DE)</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Frequency measurement</topic><topic>Fuel consumption</topic><topic>Long Term Evolution</topic><topic>Mobile communication systems</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>optimization methods</topic><topic>Performance indices</topic><topic>Power measurement</topic><topic>Signal strength</topic><topic>Software</topic><topic>Training</topic><topic>unmanned aerial vehicle (UAV)</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goudos, Sotirios K.</creatorcontrib><creatorcontrib>Tsoulos, George V.</creatorcontrib><creatorcontrib>Athanasiadou, Georgia</creatorcontrib><creatorcontrib>Batistatos, Michael C.</creatorcontrib><creatorcontrib>Zarbouti, Dimitra</creatorcontrib><creatorcontrib>Psannis, Kostas E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Goudos, Sotirios K.</au><au>Tsoulos, George V.</au><au>Athanasiadou, Georgia</au><au>Batistatos, Michael C.</au><au>Zarbouti, Dimitra</au><au>Psannis, Kostas E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Neural Network Optimal Modeling and Optimization of UAV Measurements for Mobile Communications Using the L-SHADE Algorithm</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>67</volume><issue>6</issue><spage>4022</spage><epage>4031</epage><pages>4022-4031</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Channel modeling of wireless communications from unmanned aerial vehicles (UAVs) is an emerging research challenge. In this paper, we propose a solution to this issue by applying a new framework for the prediction of received signal strength (RSS) in mobile communications based on artificial neural networks (ANNs). The experimental data measurements are taken with a UAV at different altitudes. We apply several evolutionary algorithms (EAs) in conjunction with the Levenberg-Marquardt (LM) backpropagation algorithm in order to train different ANNs and in particular the L-SHADE algorithm, which self-adapts control parameters and dynamically adjusts population size. Five new hybrid training methods are designed by combining LM with self-adaptive differential evolution (DE) strategies. These new training methods obtain better performance to ANN weight optimization than the original LM method. The received results are compared with the real values using representative ANN performance indices and exhibit satisfactory accuracy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2019.2905665</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0020-6394</orcidid><orcidid>https://orcid.org/0000-0001-5981-5683</orcidid><orcidid>https://orcid.org/0000-0002-9605-4489</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2019-06, Vol.67 (6), p.4022-4031 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAP_2019_2905665 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Antenna measurements Area measurement Artificial neural network (ANN) Artificial neural networks Back propagation cellular communications differential evolution (DE) Evolutionary algorithms Evolutionary computation Frequency measurement Fuel consumption Long Term Evolution Mobile communication systems Modelling Neural networks Optimization optimization methods Performance indices Power measurement Signal strength Software Training unmanned aerial vehicle (UAV) Unmanned aerial vehicles Wireless communications |
title | Artificial Neural Network Optimal Modeling and Optimization of UAV Measurements for Mobile Communications Using the L-SHADE Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T04%3A55%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Neural%20Network%20Optimal%20Modeling%20and%20Optimization%20of%20UAV%20Measurements%20for%20Mobile%20Communications%20Using%20the%20L-SHADE%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Goudos,%20Sotirios%20K.&rft.date=2019-06-01&rft.volume=67&rft.issue=6&rft.spage=4022&rft.epage=4031&rft.pages=4022-4031&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2019.2905665&rft_dat=%3Cproquest_RIE%3E2235825787%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2235825787&rft_id=info:pmid/&rft_ieee_id=8668525&rfr_iscdi=true |