Using Ultra-High Expansion Orders of Max-Ortho Basis Functions for Analysis of Axially Symmetric Metallic Antennas

Implementation of max-ortho basis functions is proposed in a method for analysis of axially symmetric metallic antennas based on exact kernel of electric field integral equation in combination with Galerkin testing. High-precision evaluation of matrix elements is enabled by: a) representing them as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2018-07, Vol.66 (7), p.3696-3699
Hauptverfasser: Krneta, Aleksandra J., Kolundzija, Branko M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3699
container_issue 7
container_start_page 3696
container_title IEEE transactions on antennas and propagation
container_volume 66
creator Krneta, Aleksandra J.
Kolundzija, Branko M.
description Implementation of max-ortho basis functions is proposed in a method for analysis of axially symmetric metallic antennas based on exact kernel of electric field integral equation in combination with Galerkin testing. High-precision evaluation of matrix elements is enabled by: a) representing them as a linear combination of impedance integrals due to the Legendre polynomials and their first derivatives; b) using the singularity cancelation techniques; and c) evaluating the Legendre polynomials and their first derivatives by well-known recurrent formulas. Applicability of max-ortho bases up to expansion order of n =128 is illustrated on a full-wave thick dipole antenna.
doi_str_mv 10.1109/TAP.2018.2835499
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2018_2835499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8357820</ieee_id><sourcerecordid>2063058534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-402648ffa5f65e6eb1c37717251dbc16f6603e73fd8670aabd9325247714f8fd3</originalsourceid><addsrcrecordid>eNo9kM1rAjEQxUNpodb2Xugl0PPafG_2uBWtBcVCFXoLcTfRyJq1yQr63zei9DQz7_1mGB4AzxgNMEbF26L8GhCE5YBIyllR3IAe5lxmhBB8C3ooWVlBxM89eIhxm0YmGeuBsIzOr-Gy6YLOJm69gaPjXvvoWg_noTYhwtbCmT5m89BtWviuo4twfPBVl5AIbRtg6XVzOsuJLI9ON80Jfp92O9MFV8GZ6ZKSmtJ3xnsdH8Gd1U00T9faB8vxaDGcZNP5x-ewnGYVKXCXMUQEk9ZqbgU3wqxwRfMc54TjelVhYYVA1OTU1lLkSOtVXVDCCUsMs9LWtA9eL3f3of09mNipbXsI6deoCBIUcckpSxS6UFVoYwzGqn1wOx1OCiN1TlalZNU5WXVNNq28XFacMeYfT2YuCaJ_EoB0yA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063058534</pqid></control><display><type>article</type><title>Using Ultra-High Expansion Orders of Max-Ortho Basis Functions for Analysis of Axially Symmetric Metallic Antennas</title><source>IEEE Electronic Library (IEL)</source><creator>Krneta, Aleksandra J. ; Kolundzija, Branko M.</creator><creatorcontrib>Krneta, Aleksandra J. ; Kolundzija, Branko M.</creatorcontrib><description>Implementation of max-ortho basis functions is proposed in a method for analysis of axially symmetric metallic antennas based on exact kernel of electric field integral equation in combination with Galerkin testing. High-precision evaluation of matrix elements is enabled by: a) representing them as a linear combination of impedance integrals due to the Legendre polynomials and their first derivatives; b) using the singularity cancelation techniques; and c) evaluating the Legendre polynomials and their first derivatives by well-known recurrent formulas. Applicability of max-ortho bases up to expansion order of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;n =128 &lt;/tex-math&gt;&lt;/inline-formula&gt; is illustrated on a full-wave thick dipole antenna.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2018.2835499</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Axially symmetric metallic structure ; Basis functions ; Derivatives ; Dipole antennas ; exact kernel ; Galerkin method ; Impedance ; impedance integral ; integral equation ; Integral equations ; Kernel ; Mathematical analysis ; Matrix methods ; max-ortho basis functions ; Method of moments ; method of moments (MoM) ; Polynomials ; Symmetric matrices ; UHF antennas</subject><ispartof>IEEE transactions on antennas and propagation, 2018-07, Vol.66 (7), p.3696-3699</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-402648ffa5f65e6eb1c37717251dbc16f6603e73fd8670aabd9325247714f8fd3</citedby><cites>FETCH-LOGICAL-c291t-402648ffa5f65e6eb1c37717251dbc16f6603e73fd8670aabd9325247714f8fd3</cites><orcidid>0000-0003-4589-942X ; 0000-0003-2663-4143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8357820$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8357820$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Krneta, Aleksandra J.</creatorcontrib><creatorcontrib>Kolundzija, Branko M.</creatorcontrib><title>Using Ultra-High Expansion Orders of Max-Ortho Basis Functions for Analysis of Axially Symmetric Metallic Antennas</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Implementation of max-ortho basis functions is proposed in a method for analysis of axially symmetric metallic antennas based on exact kernel of electric field integral equation in combination with Galerkin testing. High-precision evaluation of matrix elements is enabled by: a) representing them as a linear combination of impedance integrals due to the Legendre polynomials and their first derivatives; b) using the singularity cancelation techniques; and c) evaluating the Legendre polynomials and their first derivatives by well-known recurrent formulas. Applicability of max-ortho bases up to expansion order of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;n =128 &lt;/tex-math&gt;&lt;/inline-formula&gt; is illustrated on a full-wave thick dipole antenna.</description><subject>Axially symmetric metallic structure</subject><subject>Basis functions</subject><subject>Derivatives</subject><subject>Dipole antennas</subject><subject>exact kernel</subject><subject>Galerkin method</subject><subject>Impedance</subject><subject>impedance integral</subject><subject>integral equation</subject><subject>Integral equations</subject><subject>Kernel</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>max-ortho basis functions</subject><subject>Method of moments</subject><subject>method of moments (MoM)</subject><subject>Polynomials</subject><subject>Symmetric matrices</subject><subject>UHF antennas</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1rAjEQxUNpodb2Xugl0PPafG_2uBWtBcVCFXoLcTfRyJq1yQr63zei9DQz7_1mGB4AzxgNMEbF26L8GhCE5YBIyllR3IAe5lxmhBB8C3ooWVlBxM89eIhxm0YmGeuBsIzOr-Gy6YLOJm69gaPjXvvoWg_noTYhwtbCmT5m89BtWviuo4twfPBVl5AIbRtg6XVzOsuJLI9ON80Jfp92O9MFV8GZ6ZKSmtJ3xnsdH8Gd1U00T9faB8vxaDGcZNP5x-ewnGYVKXCXMUQEk9ZqbgU3wqxwRfMc54TjelVhYYVA1OTU1lLkSOtVXVDCCUsMs9LWtA9eL3f3of09mNipbXsI6deoCBIUcckpSxS6UFVoYwzGqn1wOx1OCiN1TlalZNU5WXVNNq28XFacMeYfT2YuCaJ_EoB0yA</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Krneta, Aleksandra J.</creator><creator>Kolundzija, Branko M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4589-942X</orcidid><orcidid>https://orcid.org/0000-0003-2663-4143</orcidid></search><sort><creationdate>20180701</creationdate><title>Using Ultra-High Expansion Orders of Max-Ortho Basis Functions for Analysis of Axially Symmetric Metallic Antennas</title><author>Krneta, Aleksandra J. ; Kolundzija, Branko M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-402648ffa5f65e6eb1c37717251dbc16f6603e73fd8670aabd9325247714f8fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Axially symmetric metallic structure</topic><topic>Basis functions</topic><topic>Derivatives</topic><topic>Dipole antennas</topic><topic>exact kernel</topic><topic>Galerkin method</topic><topic>Impedance</topic><topic>impedance integral</topic><topic>integral equation</topic><topic>Integral equations</topic><topic>Kernel</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>max-ortho basis functions</topic><topic>Method of moments</topic><topic>method of moments (MoM)</topic><topic>Polynomials</topic><topic>Symmetric matrices</topic><topic>UHF antennas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krneta, Aleksandra J.</creatorcontrib><creatorcontrib>Kolundzija, Branko M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Krneta, Aleksandra J.</au><au>Kolundzija, Branko M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Ultra-High Expansion Orders of Max-Ortho Basis Functions for Analysis of Axially Symmetric Metallic Antennas</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>66</volume><issue>7</issue><spage>3696</spage><epage>3699</epage><pages>3696-3699</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Implementation of max-ortho basis functions is proposed in a method for analysis of axially symmetric metallic antennas based on exact kernel of electric field integral equation in combination with Galerkin testing. High-precision evaluation of matrix elements is enabled by: a) representing them as a linear combination of impedance integrals due to the Legendre polynomials and their first derivatives; b) using the singularity cancelation techniques; and c) evaluating the Legendre polynomials and their first derivatives by well-known recurrent formulas. Applicability of max-ortho bases up to expansion order of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;n =128 &lt;/tex-math&gt;&lt;/inline-formula&gt; is illustrated on a full-wave thick dipole antenna.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2018.2835499</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-4589-942X</orcidid><orcidid>https://orcid.org/0000-0003-2663-4143</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2018-07, Vol.66 (7), p.3696-3699
issn 0018-926X
1558-2221
language eng
recordid cdi_crossref_primary_10_1109_TAP_2018_2835499
source IEEE Electronic Library (IEL)
subjects Axially symmetric metallic structure
Basis functions
Derivatives
Dipole antennas
exact kernel
Galerkin method
Impedance
impedance integral
integral equation
Integral equations
Kernel
Mathematical analysis
Matrix methods
max-ortho basis functions
Method of moments
method of moments (MoM)
Polynomials
Symmetric matrices
UHF antennas
title Using Ultra-High Expansion Orders of Max-Ortho Basis Functions for Analysis of Axially Symmetric Metallic Antennas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A40%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Ultra-High%20Expansion%20Orders%20of%20Max-Ortho%20Basis%20Functions%20for%20Analysis%20of%20Axially%20Symmetric%20Metallic%20Antennas&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Krneta,%20Aleksandra%20J.&rft.date=2018-07-01&rft.volume=66&rft.issue=7&rft.spage=3696&rft.epage=3699&rft.pages=3696-3699&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2018.2835499&rft_dat=%3Cproquest_RIE%3E2063058534%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063058534&rft_id=info:pmid/&rft_ieee_id=8357820&rfr_iscdi=true