Using Ultra-High Expansion Orders of Max-Ortho Basis Functions for Analysis of Axially Symmetric Metallic Antennas
Implementation of max-ortho basis functions is proposed in a method for analysis of axially symmetric metallic antennas based on exact kernel of electric field integral equation in combination with Galerkin testing. High-precision evaluation of matrix elements is enabled by: a) representing them as...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2018-07, Vol.66 (7), p.3696-3699 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3699 |
---|---|
container_issue | 7 |
container_start_page | 3696 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 66 |
creator | Krneta, Aleksandra J. Kolundzija, Branko M. |
description | Implementation of max-ortho basis functions is proposed in a method for analysis of axially symmetric metallic antennas based on exact kernel of electric field integral equation in combination with Galerkin testing. High-precision evaluation of matrix elements is enabled by: a) representing them as a linear combination of impedance integrals due to the Legendre polynomials and their first derivatives; b) using the singularity cancelation techniques; and c) evaluating the Legendre polynomials and their first derivatives by well-known recurrent formulas. Applicability of max-ortho bases up to expansion order of n =128 is illustrated on a full-wave thick dipole antenna. |
doi_str_mv | 10.1109/TAP.2018.2835499 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2018_2835499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8357820</ieee_id><sourcerecordid>2063058534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-402648ffa5f65e6eb1c37717251dbc16f6603e73fd8670aabd9325247714f8fd3</originalsourceid><addsrcrecordid>eNo9kM1rAjEQxUNpodb2Xugl0PPafG_2uBWtBcVCFXoLcTfRyJq1yQr63zei9DQz7_1mGB4AzxgNMEbF26L8GhCE5YBIyllR3IAe5lxmhBB8C3ooWVlBxM89eIhxm0YmGeuBsIzOr-Gy6YLOJm69gaPjXvvoWg_noTYhwtbCmT5m89BtWviuo4twfPBVl5AIbRtg6XVzOsuJLI9ON80Jfp92O9MFV8GZ6ZKSmtJ3xnsdH8Gd1U00T9faB8vxaDGcZNP5x-ewnGYVKXCXMUQEk9ZqbgU3wqxwRfMc54TjelVhYYVA1OTU1lLkSOtVXVDCCUsMs9LWtA9eL3f3of09mNipbXsI6deoCBIUcckpSxS6UFVoYwzGqn1wOx1OCiN1TlalZNU5WXVNNq28XFacMeYfT2YuCaJ_EoB0yA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063058534</pqid></control><display><type>article</type><title>Using Ultra-High Expansion Orders of Max-Ortho Basis Functions for Analysis of Axially Symmetric Metallic Antennas</title><source>IEEE Electronic Library (IEL)</source><creator>Krneta, Aleksandra J. ; Kolundzija, Branko M.</creator><creatorcontrib>Krneta, Aleksandra J. ; Kolundzija, Branko M.</creatorcontrib><description>Implementation of max-ortho basis functions is proposed in a method for analysis of axially symmetric metallic antennas based on exact kernel of electric field integral equation in combination with Galerkin testing. High-precision evaluation of matrix elements is enabled by: a) representing them as a linear combination of impedance integrals due to the Legendre polynomials and their first derivatives; b) using the singularity cancelation techniques; and c) evaluating the Legendre polynomials and their first derivatives by well-known recurrent formulas. Applicability of max-ortho bases up to expansion order of <inline-formula> <tex-math notation="LaTeX">n =128 </tex-math></inline-formula> is illustrated on a full-wave thick dipole antenna.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2018.2835499</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Axially symmetric metallic structure ; Basis functions ; Derivatives ; Dipole antennas ; exact kernel ; Galerkin method ; Impedance ; impedance integral ; integral equation ; Integral equations ; Kernel ; Mathematical analysis ; Matrix methods ; max-ortho basis functions ; Method of moments ; method of moments (MoM) ; Polynomials ; Symmetric matrices ; UHF antennas</subject><ispartof>IEEE transactions on antennas and propagation, 2018-07, Vol.66 (7), p.3696-3699</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-402648ffa5f65e6eb1c37717251dbc16f6603e73fd8670aabd9325247714f8fd3</citedby><cites>FETCH-LOGICAL-c291t-402648ffa5f65e6eb1c37717251dbc16f6603e73fd8670aabd9325247714f8fd3</cites><orcidid>0000-0003-4589-942X ; 0000-0003-2663-4143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8357820$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8357820$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Krneta, Aleksandra J.</creatorcontrib><creatorcontrib>Kolundzija, Branko M.</creatorcontrib><title>Using Ultra-High Expansion Orders of Max-Ortho Basis Functions for Analysis of Axially Symmetric Metallic Antennas</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Implementation of max-ortho basis functions is proposed in a method for analysis of axially symmetric metallic antennas based on exact kernel of electric field integral equation in combination with Galerkin testing. High-precision evaluation of matrix elements is enabled by: a) representing them as a linear combination of impedance integrals due to the Legendre polynomials and their first derivatives; b) using the singularity cancelation techniques; and c) evaluating the Legendre polynomials and their first derivatives by well-known recurrent formulas. Applicability of max-ortho bases up to expansion order of <inline-formula> <tex-math notation="LaTeX">n =128 </tex-math></inline-formula> is illustrated on a full-wave thick dipole antenna.</description><subject>Axially symmetric metallic structure</subject><subject>Basis functions</subject><subject>Derivatives</subject><subject>Dipole antennas</subject><subject>exact kernel</subject><subject>Galerkin method</subject><subject>Impedance</subject><subject>impedance integral</subject><subject>integral equation</subject><subject>Integral equations</subject><subject>Kernel</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>max-ortho basis functions</subject><subject>Method of moments</subject><subject>method of moments (MoM)</subject><subject>Polynomials</subject><subject>Symmetric matrices</subject><subject>UHF antennas</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1rAjEQxUNpodb2Xugl0PPafG_2uBWtBcVCFXoLcTfRyJq1yQr63zei9DQz7_1mGB4AzxgNMEbF26L8GhCE5YBIyllR3IAe5lxmhBB8C3ooWVlBxM89eIhxm0YmGeuBsIzOr-Gy6YLOJm69gaPjXvvoWg_noTYhwtbCmT5m89BtWviuo4twfPBVl5AIbRtg6XVzOsuJLI9ON80Jfp92O9MFV8GZ6ZKSmtJ3xnsdH8Gd1U00T9faB8vxaDGcZNP5x-ewnGYVKXCXMUQEk9ZqbgU3wqxwRfMc54TjelVhYYVA1OTU1lLkSOtVXVDCCUsMs9LWtA9eL3f3of09mNipbXsI6deoCBIUcckpSxS6UFVoYwzGqn1wOx1OCiN1TlalZNU5WXVNNq28XFacMeYfT2YuCaJ_EoB0yA</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Krneta, Aleksandra J.</creator><creator>Kolundzija, Branko M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4589-942X</orcidid><orcidid>https://orcid.org/0000-0003-2663-4143</orcidid></search><sort><creationdate>20180701</creationdate><title>Using Ultra-High Expansion Orders of Max-Ortho Basis Functions for Analysis of Axially Symmetric Metallic Antennas</title><author>Krneta, Aleksandra J. ; Kolundzija, Branko M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-402648ffa5f65e6eb1c37717251dbc16f6603e73fd8670aabd9325247714f8fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Axially symmetric metallic structure</topic><topic>Basis functions</topic><topic>Derivatives</topic><topic>Dipole antennas</topic><topic>exact kernel</topic><topic>Galerkin method</topic><topic>Impedance</topic><topic>impedance integral</topic><topic>integral equation</topic><topic>Integral equations</topic><topic>Kernel</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>max-ortho basis functions</topic><topic>Method of moments</topic><topic>method of moments (MoM)</topic><topic>Polynomials</topic><topic>Symmetric matrices</topic><topic>UHF antennas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krneta, Aleksandra J.</creatorcontrib><creatorcontrib>Kolundzija, Branko M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Krneta, Aleksandra J.</au><au>Kolundzija, Branko M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Ultra-High Expansion Orders of Max-Ortho Basis Functions for Analysis of Axially Symmetric Metallic Antennas</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>66</volume><issue>7</issue><spage>3696</spage><epage>3699</epage><pages>3696-3699</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Implementation of max-ortho basis functions is proposed in a method for analysis of axially symmetric metallic antennas based on exact kernel of electric field integral equation in combination with Galerkin testing. High-precision evaluation of matrix elements is enabled by: a) representing them as a linear combination of impedance integrals due to the Legendre polynomials and their first derivatives; b) using the singularity cancelation techniques; and c) evaluating the Legendre polynomials and their first derivatives by well-known recurrent formulas. Applicability of max-ortho bases up to expansion order of <inline-formula> <tex-math notation="LaTeX">n =128 </tex-math></inline-formula> is illustrated on a full-wave thick dipole antenna.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2018.2835499</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-4589-942X</orcidid><orcidid>https://orcid.org/0000-0003-2663-4143</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2018-07, Vol.66 (7), p.3696-3699 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAP_2018_2835499 |
source | IEEE Electronic Library (IEL) |
subjects | Axially symmetric metallic structure Basis functions Derivatives Dipole antennas exact kernel Galerkin method Impedance impedance integral integral equation Integral equations Kernel Mathematical analysis Matrix methods max-ortho basis functions Method of moments method of moments (MoM) Polynomials Symmetric matrices UHF antennas |
title | Using Ultra-High Expansion Orders of Max-Ortho Basis Functions for Analysis of Axially Symmetric Metallic Antennas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A40%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Ultra-High%20Expansion%20Orders%20of%20Max-Ortho%20Basis%20Functions%20for%20Analysis%20of%20Axially%20Symmetric%20Metallic%20Antennas&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Krneta,%20Aleksandra%20J.&rft.date=2018-07-01&rft.volume=66&rft.issue=7&rft.spage=3696&rft.epage=3699&rft.pages=3696-3699&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2018.2835499&rft_dat=%3Cproquest_RIE%3E2063058534%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063058534&rft_id=info:pmid/&rft_ieee_id=8357820&rfr_iscdi=true |