Millimeter Wave Channel Measurements and Implications for PHY Layer Design

There has been an increasing interest in the millimeter wave (mmW) frequency regime in the design of the next-generation wireless systems. The focus of this paper is on understanding mmW channel properties that have an important bearing on the feasibility of mmW systems in practice and have a signif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2017-12, Vol.65 (12), p.6521-6533
Hauptverfasser: Raghavan, Vasanthan, Partyka, Andrzej, Akhoondzadeh-Asl, Lida, Tassoudji, Mohammad Ali, Koymen, Ozge Hizir, Sanelli, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6533
container_issue 12
container_start_page 6521
container_title IEEE transactions on antennas and propagation
container_volume 65
creator Raghavan, Vasanthan
Partyka, Andrzej
Akhoondzadeh-Asl, Lida
Tassoudji, Mohammad Ali
Koymen, Ozge Hizir
Sanelli, John
description There has been an increasing interest in the millimeter wave (mmW) frequency regime in the design of the next-generation wireless systems. The focus of this paper is on understanding mmW channel properties that have an important bearing on the feasibility of mmW systems in practice and have a significant impact on physical layer design. In this direction, simultaneous channel sounding measurements at 2.9, 29, and 61 GHz are performed at a number of transmit-receive location pairs in indoor office, shopping mall, and outdoor environments. Based on these measurements, this paper first studies large-scale properties, such as path loss and delay spread across different carrier frequencies in these scenarios. Toward the goal of understanding the feasibility of outdoor-to-indoor coverage, material measurements corresponding to mmW reflection and penetration are studied and significant notches in signal reception spread over a few gigahertz are reported. Finally, implications of these measurements on system design are discussed, and multiple solutions are proposed to overcome these impairments.
doi_str_mv 10.1109/TAP.2017.2758198
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2017_2758198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8053813</ieee_id><sourcerecordid>1970712948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-99c57598a6453e201332ffe5b8c80326d520a0791d2d35b035edc2f0d6afe5953</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89ZJstlNjqV-tNJiDxX1FNLdWd2ym63JVui_N6XiaRh43pmXh5BrBiPGQN-txssRB5aPeC4V0-qEDJiUKuGcs1MyAGAq0Tx7PycXIWzimqo0HZDnRd00dYs9evpmf5BOvqxz2NAF2rDz2KLrA7WupLN229SF7evOBVp1ni6nH3Ru9zF4j6H-dJfkrLJNwKu_OSSvjw-ryTSZvzzNJuN5UnDN-kTrQuZSK5ulUmCsLASvKpRrVSgQPCslBwu5ZiUvhVyDkFgWvIIys5HSUgzJ7fHu1nffOwy92XQ77-JLw3QOOeM6VZGCI1X4LgSPldn6urV-bxiYgzETjZmDMfNnLEZujpEaEf9xBVKoWPIXvMFlvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970712948</pqid></control><display><type>article</type><title>Millimeter Wave Channel Measurements and Implications for PHY Layer Design</title><source>IEEE Electronic Library (IEL)</source><creator>Raghavan, Vasanthan ; Partyka, Andrzej ; Akhoondzadeh-Asl, Lida ; Tassoudji, Mohammad Ali ; Koymen, Ozge Hizir ; Sanelli, John</creator><creatorcontrib>Raghavan, Vasanthan ; Partyka, Andrzej ; Akhoondzadeh-Asl, Lida ; Tassoudji, Mohammad Ali ; Koymen, Ozge Hizir ; Sanelli, John</creatorcontrib><description>There has been an increasing interest in the millimeter wave (mmW) frequency regime in the design of the next-generation wireless systems. The focus of this paper is on understanding mmW channel properties that have an important bearing on the feasibility of mmW systems in practice and have a significant impact on physical layer design. In this direction, simultaneous channel sounding measurements at 2.9, 29, and 61 GHz are performed at a number of transmit-receive location pairs in indoor office, shopping mall, and outdoor environments. Based on these measurements, this paper first studies large-scale properties, such as path loss and delay spread across different carrier frequencies in these scenarios. Toward the goal of understanding the feasibility of outdoor-to-indoor coverage, material measurements corresponding to mmW reflection and penetration are studied and significant notches in signal reception spread over a few gigahertz are reported. Finally, implications of these measurements on system design are discussed, and multiple solutions are proposed to overcome these impairments.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2017.2758198</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna measurements ; Beamforming ; Buildings ; Carrier frequencies ; channel modeling ; delay spread ; Delays ; Design engineering ; Feasibility ; Frequency measurement ; Indoor environments ; Loss measurement ; millimeter wave (mmW) systems ; Notches ; path loss ; penetration ; Receivers ; reflection ; Shopping malls ; Signal reception ; system design ; Systems design ; Transmitters</subject><ispartof>IEEE transactions on antennas and propagation, 2017-12, Vol.65 (12), p.6521-6533</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-99c57598a6453e201332ffe5b8c80326d520a0791d2d35b035edc2f0d6afe5953</citedby><cites>FETCH-LOGICAL-c291t-99c57598a6453e201332ffe5b8c80326d520a0791d2d35b035edc2f0d6afe5953</cites><orcidid>0000-0002-4436-9016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8053813$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8053813$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Raghavan, Vasanthan</creatorcontrib><creatorcontrib>Partyka, Andrzej</creatorcontrib><creatorcontrib>Akhoondzadeh-Asl, Lida</creatorcontrib><creatorcontrib>Tassoudji, Mohammad Ali</creatorcontrib><creatorcontrib>Koymen, Ozge Hizir</creatorcontrib><creatorcontrib>Sanelli, John</creatorcontrib><title>Millimeter Wave Channel Measurements and Implications for PHY Layer Design</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>There has been an increasing interest in the millimeter wave (mmW) frequency regime in the design of the next-generation wireless systems. The focus of this paper is on understanding mmW channel properties that have an important bearing on the feasibility of mmW systems in practice and have a significant impact on physical layer design. In this direction, simultaneous channel sounding measurements at 2.9, 29, and 61 GHz are performed at a number of transmit-receive location pairs in indoor office, shopping mall, and outdoor environments. Based on these measurements, this paper first studies large-scale properties, such as path loss and delay spread across different carrier frequencies in these scenarios. Toward the goal of understanding the feasibility of outdoor-to-indoor coverage, material measurements corresponding to mmW reflection and penetration are studied and significant notches in signal reception spread over a few gigahertz are reported. Finally, implications of these measurements on system design are discussed, and multiple solutions are proposed to overcome these impairments.</description><subject>Antenna measurements</subject><subject>Beamforming</subject><subject>Buildings</subject><subject>Carrier frequencies</subject><subject>channel modeling</subject><subject>delay spread</subject><subject>Delays</subject><subject>Design engineering</subject><subject>Feasibility</subject><subject>Frequency measurement</subject><subject>Indoor environments</subject><subject>Loss measurement</subject><subject>millimeter wave (mmW) systems</subject><subject>Notches</subject><subject>path loss</subject><subject>penetration</subject><subject>Receivers</subject><subject>reflection</subject><subject>Shopping malls</subject><subject>Signal reception</subject><subject>system design</subject><subject>Systems design</subject><subject>Transmitters</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89ZJstlNjqV-tNJiDxX1FNLdWd2ym63JVui_N6XiaRh43pmXh5BrBiPGQN-txssRB5aPeC4V0-qEDJiUKuGcs1MyAGAq0Tx7PycXIWzimqo0HZDnRd00dYs9evpmf5BOvqxz2NAF2rDz2KLrA7WupLN229SF7evOBVp1ni6nH3Ru9zF4j6H-dJfkrLJNwKu_OSSvjw-ryTSZvzzNJuN5UnDN-kTrQuZSK5ulUmCsLASvKpRrVSgQPCslBwu5ZiUvhVyDkFgWvIIys5HSUgzJ7fHu1nffOwy92XQ77-JLw3QOOeM6VZGCI1X4LgSPldn6urV-bxiYgzETjZmDMfNnLEZujpEaEf9xBVKoWPIXvMFlvw</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Raghavan, Vasanthan</creator><creator>Partyka, Andrzej</creator><creator>Akhoondzadeh-Asl, Lida</creator><creator>Tassoudji, Mohammad Ali</creator><creator>Koymen, Ozge Hizir</creator><creator>Sanelli, John</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4436-9016</orcidid></search><sort><creationdate>20171201</creationdate><title>Millimeter Wave Channel Measurements and Implications for PHY Layer Design</title><author>Raghavan, Vasanthan ; Partyka, Andrzej ; Akhoondzadeh-Asl, Lida ; Tassoudji, Mohammad Ali ; Koymen, Ozge Hizir ; Sanelli, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-99c57598a6453e201332ffe5b8c80326d520a0791d2d35b035edc2f0d6afe5953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Antenna measurements</topic><topic>Beamforming</topic><topic>Buildings</topic><topic>Carrier frequencies</topic><topic>channel modeling</topic><topic>delay spread</topic><topic>Delays</topic><topic>Design engineering</topic><topic>Feasibility</topic><topic>Frequency measurement</topic><topic>Indoor environments</topic><topic>Loss measurement</topic><topic>millimeter wave (mmW) systems</topic><topic>Notches</topic><topic>path loss</topic><topic>penetration</topic><topic>Receivers</topic><topic>reflection</topic><topic>Shopping malls</topic><topic>Signal reception</topic><topic>system design</topic><topic>Systems design</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raghavan, Vasanthan</creatorcontrib><creatorcontrib>Partyka, Andrzej</creatorcontrib><creatorcontrib>Akhoondzadeh-Asl, Lida</creatorcontrib><creatorcontrib>Tassoudji, Mohammad Ali</creatorcontrib><creatorcontrib>Koymen, Ozge Hizir</creatorcontrib><creatorcontrib>Sanelli, John</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Raghavan, Vasanthan</au><au>Partyka, Andrzej</au><au>Akhoondzadeh-Asl, Lida</au><au>Tassoudji, Mohammad Ali</au><au>Koymen, Ozge Hizir</au><au>Sanelli, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Millimeter Wave Channel Measurements and Implications for PHY Layer Design</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>65</volume><issue>12</issue><spage>6521</spage><epage>6533</epage><pages>6521-6533</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>There has been an increasing interest in the millimeter wave (mmW) frequency regime in the design of the next-generation wireless systems. The focus of this paper is on understanding mmW channel properties that have an important bearing on the feasibility of mmW systems in practice and have a significant impact on physical layer design. In this direction, simultaneous channel sounding measurements at 2.9, 29, and 61 GHz are performed at a number of transmit-receive location pairs in indoor office, shopping mall, and outdoor environments. Based on these measurements, this paper first studies large-scale properties, such as path loss and delay spread across different carrier frequencies in these scenarios. Toward the goal of understanding the feasibility of outdoor-to-indoor coverage, material measurements corresponding to mmW reflection and penetration are studied and significant notches in signal reception spread over a few gigahertz are reported. Finally, implications of these measurements on system design are discussed, and multiple solutions are proposed to overcome these impairments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2017.2758198</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4436-9016</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2017-12, Vol.65 (12), p.6521-6533
issn 0018-926X
1558-2221
language eng
recordid cdi_crossref_primary_10_1109_TAP_2017_2758198
source IEEE Electronic Library (IEL)
subjects Antenna measurements
Beamforming
Buildings
Carrier frequencies
channel modeling
delay spread
Delays
Design engineering
Feasibility
Frequency measurement
Indoor environments
Loss measurement
millimeter wave (mmW) systems
Notches
path loss
penetration
Receivers
reflection
Shopping malls
Signal reception
system design
Systems design
Transmitters
title Millimeter Wave Channel Measurements and Implications for PHY Layer Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A16%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Millimeter%20Wave%20Channel%20Measurements%20and%20Implications%20for%20PHY%20Layer%20Design&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Raghavan,%20Vasanthan&rft.date=2017-12-01&rft.volume=65&rft.issue=12&rft.spage=6521&rft.epage=6533&rft.pages=6521-6533&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2017.2758198&rft_dat=%3Cproquest_RIE%3E1970712948%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1970712948&rft_id=info:pmid/&rft_ieee_id=8053813&rfr_iscdi=true