A Multibeam End-Fire Magnetoelectric Dipole Antenna Array for Millimeter-Wave Applications
A novel substrate integrated waveguide (SIW)-fed end-fire magnetoelectric (ME) dipole antenna is proposed. The antenna consisting of an open-ended SIW and a pair of electric dipoles has a simple structure that can be integrated into substrates conveniently. Both the open-ended SIW and the electric d...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2016-07, Vol.64 (7), p.2894-2904 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2904 |
---|---|
container_issue | 7 |
container_start_page | 2894 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 64 |
creator | Li, Yujian Luk, Kwai-Man |
description | A novel substrate integrated waveguide (SIW)-fed end-fire magnetoelectric (ME) dipole antenna is proposed. The antenna consisting of an open-ended SIW and a pair of electric dipoles has a simple structure that can be integrated into substrates conveniently. Both the open-ended SIW and the electric dipoles are effectively radiated together. Excellent performance, including a bandwidth of 44%, symmetrical radiation patterns that are almost identical in two orthogonal planes, low backward radiation, low cross polarizations, stable gain of around 5 dBi, and wide beamwidth of around 110°, are also obtained. An 8×8 SIW Butler matrix is then designed. Modifications to the geometry of the matrix provide more spacing to locate SIW phase shifters and phase compensation structures with wide bandwidth. By employing the proposed end-fire ME-dipole antenna array and the 8×8 Butler matrix, an eight-beam antenna array is realized. The fabricated prototype demonstrates that wide bandwidth, stable radiation patterns with cross polarizations of less than -28 dB and gain varying from 9 to 12 dBi can be obtained. The proposed multibeam end-fire ME-dipole antenna array would be an attractive candidate for millimeter-wave wireless applications due to its good performance, ease of integration, and low fabrication cost. |
doi_str_mv | 10.1109/TAP.2016.2554601 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2016_2554601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7453130</ieee_id><sourcerecordid>4111665031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-d52aaf6b482ab9a83dfdd2cae90226946e07576a031448edcdbbc269560112433</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z87sdxqa0KXfRQUbyEbDIrKdvdNZsK_femtHgahnneGeZB6JaSGaWkeFiXbzNGaDpjUoqU0DM0oVLmCWOMnqMJITRPCpZ-XqKrcdzEVuRCTNBXiatdG1wNeosXnU2WzgOu9HcHoYcWTPDO4Ec39C3gsgvQdRqX3us9bnqPK9e2bgsBfPKhfyMxDK0zOri-G6_RRaPbEW5OdYrel4v1_DlZvT69zMtVYrjMQmIl07pJa5EzXRc657axlhkNBWEsLUQKJJNZqgmnQuRgja1rEwcyPkmZ4HyK7o97B9__7GAMatPvfBdPKpoTJjmPbKTIkTK-H0cPjRq822q_V5Sog0EVDaqDQXUyGCN3x4gDgH88E5JTTvgfw3hr_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1802533956</pqid></control><display><type>article</type><title>A Multibeam End-Fire Magnetoelectric Dipole Antenna Array for Millimeter-Wave Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Yujian ; Luk, Kwai-Man</creator><creatorcontrib>Li, Yujian ; Luk, Kwai-Man</creatorcontrib><description>A novel substrate integrated waveguide (SIW)-fed end-fire magnetoelectric (ME) dipole antenna is proposed. The antenna consisting of an open-ended SIW and a pair of electric dipoles has a simple structure that can be integrated into substrates conveniently. Both the open-ended SIW and the electric dipoles are effectively radiated together. Excellent performance, including a bandwidth of 44%, symmetrical radiation patterns that are almost identical in two orthogonal planes, low backward radiation, low cross polarizations, stable gain of around 5 dBi, and wide beamwidth of around 110°, are also obtained. An 8×8 SIW Butler matrix is then designed. Modifications to the geometry of the matrix provide more spacing to locate SIW phase shifters and phase compensation structures with wide bandwidth. By employing the proposed end-fire ME-dipole antenna array and the 8×8 Butler matrix, an eight-beam antenna array is realized. The fabricated prototype demonstrates that wide bandwidth, stable radiation patterns with cross polarizations of less than -28 dB and gain varying from 9 to 12 dBi can be obtained. The proposed multibeam end-fire ME-dipole antenna array would be an attractive candidate for millimeter-wave wireless applications due to its good performance, ease of integration, and low fabrication cost.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2016.2554601</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>60 GHz ; Antenna radiation patterns ; Butler matrices ; Butler matrix ; Dipole antennas ; end-fire antenna ; magnetoelectric (ME) dipole ; Magnetoelectric effects ; Millimeter wave technology ; multibeam antenna ; substrate integrated waveguide (SIW) ; Substrates</subject><ispartof>IEEE transactions on antennas and propagation, 2016-07, Vol.64 (7), p.2894-2904</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-d52aaf6b482ab9a83dfdd2cae90226946e07576a031448edcdbbc269560112433</citedby><cites>FETCH-LOGICAL-c357t-d52aaf6b482ab9a83dfdd2cae90226946e07576a031448edcdbbc269560112433</cites><orcidid>0000-0002-4834-0755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7453130$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7453130$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Yujian</creatorcontrib><creatorcontrib>Luk, Kwai-Man</creatorcontrib><title>A Multibeam End-Fire Magnetoelectric Dipole Antenna Array for Millimeter-Wave Applications</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>A novel substrate integrated waveguide (SIW)-fed end-fire magnetoelectric (ME) dipole antenna is proposed. The antenna consisting of an open-ended SIW and a pair of electric dipoles has a simple structure that can be integrated into substrates conveniently. Both the open-ended SIW and the electric dipoles are effectively radiated together. Excellent performance, including a bandwidth of 44%, symmetrical radiation patterns that are almost identical in two orthogonal planes, low backward radiation, low cross polarizations, stable gain of around 5 dBi, and wide beamwidth of around 110°, are also obtained. An 8×8 SIW Butler matrix is then designed. Modifications to the geometry of the matrix provide more spacing to locate SIW phase shifters and phase compensation structures with wide bandwidth. By employing the proposed end-fire ME-dipole antenna array and the 8×8 Butler matrix, an eight-beam antenna array is realized. The fabricated prototype demonstrates that wide bandwidth, stable radiation patterns with cross polarizations of less than -28 dB and gain varying from 9 to 12 dBi can be obtained. The proposed multibeam end-fire ME-dipole antenna array would be an attractive candidate for millimeter-wave wireless applications due to its good performance, ease of integration, and low fabrication cost.</description><subject>60 GHz</subject><subject>Antenna radiation patterns</subject><subject>Butler matrices</subject><subject>Butler matrix</subject><subject>Dipole antennas</subject><subject>end-fire antenna</subject><subject>magnetoelectric (ME) dipole</subject><subject>Magnetoelectric effects</subject><subject>Millimeter wave technology</subject><subject>multibeam antenna</subject><subject>substrate integrated waveguide (SIW)</subject><subject>Substrates</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z87sdxqa0KXfRQUbyEbDIrKdvdNZsK_femtHgahnneGeZB6JaSGaWkeFiXbzNGaDpjUoqU0DM0oVLmCWOMnqMJITRPCpZ-XqKrcdzEVuRCTNBXiatdG1wNeosXnU2WzgOu9HcHoYcWTPDO4Ec39C3gsgvQdRqX3us9bnqPK9e2bgsBfPKhfyMxDK0zOri-G6_RRaPbEW5OdYrel4v1_DlZvT69zMtVYrjMQmIl07pJa5EzXRc657axlhkNBWEsLUQKJJNZqgmnQuRgja1rEwcyPkmZ4HyK7o97B9__7GAMatPvfBdPKpoTJjmPbKTIkTK-H0cPjRq822q_V5Sog0EVDaqDQXUyGCN3x4gDgH88E5JTTvgfw3hr_w</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Li, Yujian</creator><creator>Luk, Kwai-Man</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4834-0755</orcidid></search><sort><creationdate>201607</creationdate><title>A Multibeam End-Fire Magnetoelectric Dipole Antenna Array for Millimeter-Wave Applications</title><author>Li, Yujian ; Luk, Kwai-Man</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-d52aaf6b482ab9a83dfdd2cae90226946e07576a031448edcdbbc269560112433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>60 GHz</topic><topic>Antenna radiation patterns</topic><topic>Butler matrices</topic><topic>Butler matrix</topic><topic>Dipole antennas</topic><topic>end-fire antenna</topic><topic>magnetoelectric (ME) dipole</topic><topic>Magnetoelectric effects</topic><topic>Millimeter wave technology</topic><topic>multibeam antenna</topic><topic>substrate integrated waveguide (SIW)</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yujian</creatorcontrib><creatorcontrib>Luk, Kwai-Man</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Yujian</au><au>Luk, Kwai-Man</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multibeam End-Fire Magnetoelectric Dipole Antenna Array for Millimeter-Wave Applications</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2016-07</date><risdate>2016</risdate><volume>64</volume><issue>7</issue><spage>2894</spage><epage>2904</epage><pages>2894-2904</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>A novel substrate integrated waveguide (SIW)-fed end-fire magnetoelectric (ME) dipole antenna is proposed. The antenna consisting of an open-ended SIW and a pair of electric dipoles has a simple structure that can be integrated into substrates conveniently. Both the open-ended SIW and the electric dipoles are effectively radiated together. Excellent performance, including a bandwidth of 44%, symmetrical radiation patterns that are almost identical in two orthogonal planes, low backward radiation, low cross polarizations, stable gain of around 5 dBi, and wide beamwidth of around 110°, are also obtained. An 8×8 SIW Butler matrix is then designed. Modifications to the geometry of the matrix provide more spacing to locate SIW phase shifters and phase compensation structures with wide bandwidth. By employing the proposed end-fire ME-dipole antenna array and the 8×8 Butler matrix, an eight-beam antenna array is realized. The fabricated prototype demonstrates that wide bandwidth, stable radiation patterns with cross polarizations of less than -28 dB and gain varying from 9 to 12 dBi can be obtained. The proposed multibeam end-fire ME-dipole antenna array would be an attractive candidate for millimeter-wave wireless applications due to its good performance, ease of integration, and low fabrication cost.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2016.2554601</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4834-0755</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2016-07, Vol.64 (7), p.2894-2904 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAP_2016_2554601 |
source | IEEE Electronic Library (IEL) |
subjects | 60 GHz Antenna radiation patterns Butler matrices Butler matrix Dipole antennas end-fire antenna magnetoelectric (ME) dipole Magnetoelectric effects Millimeter wave technology multibeam antenna substrate integrated waveguide (SIW) Substrates |
title | A Multibeam End-Fire Magnetoelectric Dipole Antenna Array for Millimeter-Wave Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A08%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multibeam%20End-Fire%20Magnetoelectric%20Dipole%20Antenna%20Array%20for%20Millimeter-Wave%20Applications&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Li,%20Yujian&rft.date=2016-07&rft.volume=64&rft.issue=7&rft.spage=2894&rft.epage=2904&rft.pages=2894-2904&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2016.2554601&rft_dat=%3Cproquest_RIE%3E4111665031%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1802533956&rft_id=info:pmid/&rft_ieee_id=7453130&rfr_iscdi=true |