A Multibeam End-Fire Magnetoelectric Dipole Antenna Array for Millimeter-Wave Applications

A novel substrate integrated waveguide (SIW)-fed end-fire magnetoelectric (ME) dipole antenna is proposed. The antenna consisting of an open-ended SIW and a pair of electric dipoles has a simple structure that can be integrated into substrates conveniently. Both the open-ended SIW and the electric d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2016-07, Vol.64 (7), p.2894-2904
Hauptverfasser: Li, Yujian, Luk, Kwai-Man
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2904
container_issue 7
container_start_page 2894
container_title IEEE transactions on antennas and propagation
container_volume 64
creator Li, Yujian
Luk, Kwai-Man
description A novel substrate integrated waveguide (SIW)-fed end-fire magnetoelectric (ME) dipole antenna is proposed. The antenna consisting of an open-ended SIW and a pair of electric dipoles has a simple structure that can be integrated into substrates conveniently. Both the open-ended SIW and the electric dipoles are effectively radiated together. Excellent performance, including a bandwidth of 44%, symmetrical radiation patterns that are almost identical in two orthogonal planes, low backward radiation, low cross polarizations, stable gain of around 5 dBi, and wide beamwidth of around 110°, are also obtained. An 8×8 SIW Butler matrix is then designed. Modifications to the geometry of the matrix provide more spacing to locate SIW phase shifters and phase compensation structures with wide bandwidth. By employing the proposed end-fire ME-dipole antenna array and the 8×8 Butler matrix, an eight-beam antenna array is realized. The fabricated prototype demonstrates that wide bandwidth, stable radiation patterns with cross polarizations of less than -28 dB and gain varying from 9 to 12 dBi can be obtained. The proposed multibeam end-fire ME-dipole antenna array would be an attractive candidate for millimeter-wave wireless applications due to its good performance, ease of integration, and low fabrication cost.
doi_str_mv 10.1109/TAP.2016.2554601
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2016_2554601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7453130</ieee_id><sourcerecordid>4111665031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-d52aaf6b482ab9a83dfdd2cae90226946e07576a031448edcdbbc269560112433</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z87sdxqa0KXfRQUbyEbDIrKdvdNZsK_femtHgahnneGeZB6JaSGaWkeFiXbzNGaDpjUoqU0DM0oVLmCWOMnqMJITRPCpZ-XqKrcdzEVuRCTNBXiatdG1wNeosXnU2WzgOu9HcHoYcWTPDO4Ec39C3gsgvQdRqX3us9bnqPK9e2bgsBfPKhfyMxDK0zOri-G6_RRaPbEW5OdYrel4v1_DlZvT69zMtVYrjMQmIl07pJa5EzXRc657axlhkNBWEsLUQKJJNZqgmnQuRgja1rEwcyPkmZ4HyK7o97B9__7GAMatPvfBdPKpoTJjmPbKTIkTK-H0cPjRq822q_V5Sog0EVDaqDQXUyGCN3x4gDgH88E5JTTvgfw3hr_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1802533956</pqid></control><display><type>article</type><title>A Multibeam End-Fire Magnetoelectric Dipole Antenna Array for Millimeter-Wave Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Yujian ; Luk, Kwai-Man</creator><creatorcontrib>Li, Yujian ; Luk, Kwai-Man</creatorcontrib><description>A novel substrate integrated waveguide (SIW)-fed end-fire magnetoelectric (ME) dipole antenna is proposed. The antenna consisting of an open-ended SIW and a pair of electric dipoles has a simple structure that can be integrated into substrates conveniently. Both the open-ended SIW and the electric dipoles are effectively radiated together. Excellent performance, including a bandwidth of 44%, symmetrical radiation patterns that are almost identical in two orthogonal planes, low backward radiation, low cross polarizations, stable gain of around 5 dBi, and wide beamwidth of around 110°, are also obtained. An 8×8 SIW Butler matrix is then designed. Modifications to the geometry of the matrix provide more spacing to locate SIW phase shifters and phase compensation structures with wide bandwidth. By employing the proposed end-fire ME-dipole antenna array and the 8×8 Butler matrix, an eight-beam antenna array is realized. The fabricated prototype demonstrates that wide bandwidth, stable radiation patterns with cross polarizations of less than -28 dB and gain varying from 9 to 12 dBi can be obtained. The proposed multibeam end-fire ME-dipole antenna array would be an attractive candidate for millimeter-wave wireless applications due to its good performance, ease of integration, and low fabrication cost.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2016.2554601</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>60 GHz ; Antenna radiation patterns ; Butler matrices ; Butler matrix ; Dipole antennas ; end-fire antenna ; magnetoelectric (ME) dipole ; Magnetoelectric effects ; Millimeter wave technology ; multibeam antenna ; substrate integrated waveguide (SIW) ; Substrates</subject><ispartof>IEEE transactions on antennas and propagation, 2016-07, Vol.64 (7), p.2894-2904</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-d52aaf6b482ab9a83dfdd2cae90226946e07576a031448edcdbbc269560112433</citedby><cites>FETCH-LOGICAL-c357t-d52aaf6b482ab9a83dfdd2cae90226946e07576a031448edcdbbc269560112433</cites><orcidid>0000-0002-4834-0755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7453130$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7453130$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Yujian</creatorcontrib><creatorcontrib>Luk, Kwai-Man</creatorcontrib><title>A Multibeam End-Fire Magnetoelectric Dipole Antenna Array for Millimeter-Wave Applications</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>A novel substrate integrated waveguide (SIW)-fed end-fire magnetoelectric (ME) dipole antenna is proposed. The antenna consisting of an open-ended SIW and a pair of electric dipoles has a simple structure that can be integrated into substrates conveniently. Both the open-ended SIW and the electric dipoles are effectively radiated together. Excellent performance, including a bandwidth of 44%, symmetrical radiation patterns that are almost identical in two orthogonal planes, low backward radiation, low cross polarizations, stable gain of around 5 dBi, and wide beamwidth of around 110°, are also obtained. An 8×8 SIW Butler matrix is then designed. Modifications to the geometry of the matrix provide more spacing to locate SIW phase shifters and phase compensation structures with wide bandwidth. By employing the proposed end-fire ME-dipole antenna array and the 8×8 Butler matrix, an eight-beam antenna array is realized. The fabricated prototype demonstrates that wide bandwidth, stable radiation patterns with cross polarizations of less than -28 dB and gain varying from 9 to 12 dBi can be obtained. The proposed multibeam end-fire ME-dipole antenna array would be an attractive candidate for millimeter-wave wireless applications due to its good performance, ease of integration, and low fabrication cost.</description><subject>60 GHz</subject><subject>Antenna radiation patterns</subject><subject>Butler matrices</subject><subject>Butler matrix</subject><subject>Dipole antennas</subject><subject>end-fire antenna</subject><subject>magnetoelectric (ME) dipole</subject><subject>Magnetoelectric effects</subject><subject>Millimeter wave technology</subject><subject>multibeam antenna</subject><subject>substrate integrated waveguide (SIW)</subject><subject>Substrates</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z87sdxqa0KXfRQUbyEbDIrKdvdNZsK_femtHgahnneGeZB6JaSGaWkeFiXbzNGaDpjUoqU0DM0oVLmCWOMnqMJITRPCpZ-XqKrcdzEVuRCTNBXiatdG1wNeosXnU2WzgOu9HcHoYcWTPDO4Ec39C3gsgvQdRqX3us9bnqPK9e2bgsBfPKhfyMxDK0zOri-G6_RRaPbEW5OdYrel4v1_DlZvT69zMtVYrjMQmIl07pJa5EzXRc657axlhkNBWEsLUQKJJNZqgmnQuRgja1rEwcyPkmZ4HyK7o97B9__7GAMatPvfBdPKpoTJjmPbKTIkTK-H0cPjRq822q_V5Sog0EVDaqDQXUyGCN3x4gDgH88E5JTTvgfw3hr_w</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Li, Yujian</creator><creator>Luk, Kwai-Man</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4834-0755</orcidid></search><sort><creationdate>201607</creationdate><title>A Multibeam End-Fire Magnetoelectric Dipole Antenna Array for Millimeter-Wave Applications</title><author>Li, Yujian ; Luk, Kwai-Man</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-d52aaf6b482ab9a83dfdd2cae90226946e07576a031448edcdbbc269560112433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>60 GHz</topic><topic>Antenna radiation patterns</topic><topic>Butler matrices</topic><topic>Butler matrix</topic><topic>Dipole antennas</topic><topic>end-fire antenna</topic><topic>magnetoelectric (ME) dipole</topic><topic>Magnetoelectric effects</topic><topic>Millimeter wave technology</topic><topic>multibeam antenna</topic><topic>substrate integrated waveguide (SIW)</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yujian</creatorcontrib><creatorcontrib>Luk, Kwai-Man</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Yujian</au><au>Luk, Kwai-Man</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multibeam End-Fire Magnetoelectric Dipole Antenna Array for Millimeter-Wave Applications</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2016-07</date><risdate>2016</risdate><volume>64</volume><issue>7</issue><spage>2894</spage><epage>2904</epage><pages>2894-2904</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>A novel substrate integrated waveguide (SIW)-fed end-fire magnetoelectric (ME) dipole antenna is proposed. The antenna consisting of an open-ended SIW and a pair of electric dipoles has a simple structure that can be integrated into substrates conveniently. Both the open-ended SIW and the electric dipoles are effectively radiated together. Excellent performance, including a bandwidth of 44%, symmetrical radiation patterns that are almost identical in two orthogonal planes, low backward radiation, low cross polarizations, stable gain of around 5 dBi, and wide beamwidth of around 110°, are also obtained. An 8×8 SIW Butler matrix is then designed. Modifications to the geometry of the matrix provide more spacing to locate SIW phase shifters and phase compensation structures with wide bandwidth. By employing the proposed end-fire ME-dipole antenna array and the 8×8 Butler matrix, an eight-beam antenna array is realized. The fabricated prototype demonstrates that wide bandwidth, stable radiation patterns with cross polarizations of less than -28 dB and gain varying from 9 to 12 dBi can be obtained. The proposed multibeam end-fire ME-dipole antenna array would be an attractive candidate for millimeter-wave wireless applications due to its good performance, ease of integration, and low fabrication cost.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2016.2554601</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4834-0755</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2016-07, Vol.64 (7), p.2894-2904
issn 0018-926X
1558-2221
language eng
recordid cdi_crossref_primary_10_1109_TAP_2016_2554601
source IEEE Electronic Library (IEL)
subjects 60 GHz
Antenna radiation patterns
Butler matrices
Butler matrix
Dipole antennas
end-fire antenna
magnetoelectric (ME) dipole
Magnetoelectric effects
Millimeter wave technology
multibeam antenna
substrate integrated waveguide (SIW)
Substrates
title A Multibeam End-Fire Magnetoelectric Dipole Antenna Array for Millimeter-Wave Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A08%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multibeam%20End-Fire%20Magnetoelectric%20Dipole%20Antenna%20Array%20for%20Millimeter-Wave%20Applications&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Li,%20Yujian&rft.date=2016-07&rft.volume=64&rft.issue=7&rft.spage=2894&rft.epage=2904&rft.pages=2894-2904&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2016.2554601&rft_dat=%3Cproquest_RIE%3E4111665031%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1802533956&rft_id=info:pmid/&rft_ieee_id=7453130&rfr_iscdi=true