Error Analysis and Comparative Study of Numerical Methods for the Parabolic Equation Applied to Tunnel Propagation Modeling
Parabolic equation (PE) methods have been widely applied to the modeling of wireless propagation in tunnel environments. However, the relevant literature does not include concrete guidelines for the choice of the parameters of these methods and the tradeoffs involved. This paper provides a comprehen...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2015-07, Vol.63 (7), p.3025-3034 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3034 |
---|---|
container_issue | 7 |
container_start_page | 3025 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 63 |
creator | Xingqi Zhang Sarris, Costas D. |
description | Parabolic equation (PE) methods have been widely applied to the modeling of wireless propagation in tunnel environments. However, the relevant literature does not include concrete guidelines for the choice of the parameters of these methods and the tradeoffs involved. This paper provides a comprehensive analysis of the two sources of error that arise when PE methods are employed for the modeling of radio-wave propagation scenarios: the well-known numerical dispersion error stemming from the finite-difference solvers for PE and the approximation error stemming from the use of PE for the solution of wave propagation problems that are subject to Maxwell's equations. The analysis is performed for four methods, three of which have been already used in PE-based propagation studies, namely, the Crank-Nicolson (CN) scheme, the alternative-direction-implicit (ADI) method, and its locally one-dimensional (LOD-ADI) version. The fourth method is the Mitchell-Fairweather (MF)-ADI scheme that has been recently shown to be a promising alternative technique for tunnel propagation modeling. The proposed method leads to robust criteria for the choice of spatial discretization in realistic propagation scenarios, as shown via numerical examples. |
doi_str_mv | 10.1109/TAP.2015.2421974 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2015_2421974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7084189</ieee_id><sourcerecordid>10_1109_TAP_2015_2421974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-3b366501aa81f4f64c5b995fff850936189d35d4343a8f91ea087b92d0ba8a423</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKf3gjf5A5357JLLMqYTNh04wbuSNskW6ZqatMLwz5ux4dXh5bzPOfAAcI_RBGMkHzfFekIQ5hPCCJZTdgFGmHOREULwJRghhEUmSf55DW5i_EqRCcZG4Hcegg-waFVziC5C1Wo48_tOBdW7HwPf-0EfoLfwddib4GrVwJXpd15HaBPX7wxcp27lG1fD-feQKN_CousaZzTsPdwMbWsauA6-U9vTduW1aVy7vQVXVjXR3J3nGHw8zTezRbZ8e36ZFcusJjntM1rRPOcIKyWwZTZnNa-k5NZawZGkORZSU64ZZVQJK7FRSEwrSTSqlFCM0DFAp7t18DEGY8suuL0KhxKj8iivTPLKo7zyLC8hDyfEGWP-61MkWPpG_wAKIWyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Error Analysis and Comparative Study of Numerical Methods for the Parabolic Equation Applied to Tunnel Propagation Modeling</title><source>IEEE Electronic Library (IEL)</source><creator>Xingqi Zhang ; Sarris, Costas D.</creator><creatorcontrib>Xingqi Zhang ; Sarris, Costas D.</creatorcontrib><description>Parabolic equation (PE) methods have been widely applied to the modeling of wireless propagation in tunnel environments. However, the relevant literature does not include concrete guidelines for the choice of the parameters of these methods and the tradeoffs involved. This paper provides a comprehensive analysis of the two sources of error that arise when PE methods are employed for the modeling of radio-wave propagation scenarios: the well-known numerical dispersion error stemming from the finite-difference solvers for PE and the approximation error stemming from the use of PE for the solution of wave propagation problems that are subject to Maxwell's equations. The analysis is performed for four methods, three of which have been already used in PE-based propagation studies, namely, the Crank-Nicolson (CN) scheme, the alternative-direction-implicit (ADI) method, and its locally one-dimensional (LOD-ADI) version. The fourth method is the Mitchell-Fairweather (MF)-ADI scheme that has been recently shown to be a promising alternative technique for tunnel propagation modeling. The proposed method leads to robust criteria for the choice of spatial discretization in realistic propagation scenarios, as shown via numerical examples.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2015.2421974</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Alternative-Direction-Implicit (ADI) ; Approximation error ; Crank- Nicolson (CN) ; Dispersion ; dispersion analysis ; electromagnetic propagation ; Error analysis ; Helmholtz equation ; Locally-One-Dimensional (LOD) ; Mathematical model ; parabolic equation ; Propagation</subject><ispartof>IEEE transactions on antennas and propagation, 2015-07, Vol.63 (7), p.3025-3034</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-3b366501aa81f4f64c5b995fff850936189d35d4343a8f91ea087b92d0ba8a423</citedby><cites>FETCH-LOGICAL-c263t-3b366501aa81f4f64c5b995fff850936189d35d4343a8f91ea087b92d0ba8a423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7084189$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7084189$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xingqi Zhang</creatorcontrib><creatorcontrib>Sarris, Costas D.</creatorcontrib><title>Error Analysis and Comparative Study of Numerical Methods for the Parabolic Equation Applied to Tunnel Propagation Modeling</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Parabolic equation (PE) methods have been widely applied to the modeling of wireless propagation in tunnel environments. However, the relevant literature does not include concrete guidelines for the choice of the parameters of these methods and the tradeoffs involved. This paper provides a comprehensive analysis of the two sources of error that arise when PE methods are employed for the modeling of radio-wave propagation scenarios: the well-known numerical dispersion error stemming from the finite-difference solvers for PE and the approximation error stemming from the use of PE for the solution of wave propagation problems that are subject to Maxwell's equations. The analysis is performed for four methods, three of which have been already used in PE-based propagation studies, namely, the Crank-Nicolson (CN) scheme, the alternative-direction-implicit (ADI) method, and its locally one-dimensional (LOD-ADI) version. The fourth method is the Mitchell-Fairweather (MF)-ADI scheme that has been recently shown to be a promising alternative technique for tunnel propagation modeling. The proposed method leads to robust criteria for the choice of spatial discretization in realistic propagation scenarios, as shown via numerical examples.</description><subject>Accuracy</subject><subject>Alternative-Direction-Implicit (ADI)</subject><subject>Approximation error</subject><subject>Crank- Nicolson (CN)</subject><subject>Dispersion</subject><subject>dispersion analysis</subject><subject>electromagnetic propagation</subject><subject>Error analysis</subject><subject>Helmholtz equation</subject><subject>Locally-One-Dimensional (LOD)</subject><subject>Mathematical model</subject><subject>parabolic equation</subject><subject>Propagation</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKf3gjf5A5357JLLMqYTNh04wbuSNskW6ZqatMLwz5ux4dXh5bzPOfAAcI_RBGMkHzfFekIQ5hPCCJZTdgFGmHOREULwJRghhEUmSf55DW5i_EqRCcZG4Hcegg-waFVziC5C1Wo48_tOBdW7HwPf-0EfoLfwddib4GrVwJXpd15HaBPX7wxcp27lG1fD-feQKN_CousaZzTsPdwMbWsauA6-U9vTduW1aVy7vQVXVjXR3J3nGHw8zTezRbZ8e36ZFcusJjntM1rRPOcIKyWwZTZnNa-k5NZawZGkORZSU64ZZVQJK7FRSEwrSTSqlFCM0DFAp7t18DEGY8suuL0KhxKj8iivTPLKo7zyLC8hDyfEGWP-61MkWPpG_wAKIWyQ</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Xingqi Zhang</creator><creator>Sarris, Costas D.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201507</creationdate><title>Error Analysis and Comparative Study of Numerical Methods for the Parabolic Equation Applied to Tunnel Propagation Modeling</title><author>Xingqi Zhang ; Sarris, Costas D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-3b366501aa81f4f64c5b995fff850936189d35d4343a8f91ea087b92d0ba8a423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Alternative-Direction-Implicit (ADI)</topic><topic>Approximation error</topic><topic>Crank- Nicolson (CN)</topic><topic>Dispersion</topic><topic>dispersion analysis</topic><topic>electromagnetic propagation</topic><topic>Error analysis</topic><topic>Helmholtz equation</topic><topic>Locally-One-Dimensional (LOD)</topic><topic>Mathematical model</topic><topic>parabolic equation</topic><topic>Propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xingqi Zhang</creatorcontrib><creatorcontrib>Sarris, Costas D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xingqi Zhang</au><au>Sarris, Costas D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error Analysis and Comparative Study of Numerical Methods for the Parabolic Equation Applied to Tunnel Propagation Modeling</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2015-07</date><risdate>2015</risdate><volume>63</volume><issue>7</issue><spage>3025</spage><epage>3034</epage><pages>3025-3034</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Parabolic equation (PE) methods have been widely applied to the modeling of wireless propagation in tunnel environments. However, the relevant literature does not include concrete guidelines for the choice of the parameters of these methods and the tradeoffs involved. This paper provides a comprehensive analysis of the two sources of error that arise when PE methods are employed for the modeling of radio-wave propagation scenarios: the well-known numerical dispersion error stemming from the finite-difference solvers for PE and the approximation error stemming from the use of PE for the solution of wave propagation problems that are subject to Maxwell's equations. The analysis is performed for four methods, three of which have been already used in PE-based propagation studies, namely, the Crank-Nicolson (CN) scheme, the alternative-direction-implicit (ADI) method, and its locally one-dimensional (LOD-ADI) version. The fourth method is the Mitchell-Fairweather (MF)-ADI scheme that has been recently shown to be a promising alternative technique for tunnel propagation modeling. The proposed method leads to robust criteria for the choice of spatial discretization in realistic propagation scenarios, as shown via numerical examples.</abstract><pub>IEEE</pub><doi>10.1109/TAP.2015.2421974</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2015-07, Vol.63 (7), p.3025-3034 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAP_2015_2421974 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Alternative-Direction-Implicit (ADI) Approximation error Crank- Nicolson (CN) Dispersion dispersion analysis electromagnetic propagation Error analysis Helmholtz equation Locally-One-Dimensional (LOD) Mathematical model parabolic equation Propagation |
title | Error Analysis and Comparative Study of Numerical Methods for the Parabolic Equation Applied to Tunnel Propagation Modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20Analysis%20and%20Comparative%20Study%20of%20Numerical%20Methods%20for%20the%20Parabolic%20Equation%20Applied%20to%20Tunnel%20Propagation%20Modeling&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Xingqi%20Zhang&rft.date=2015-07&rft.volume=63&rft.issue=7&rft.spage=3025&rft.epage=3034&rft.pages=3025-3034&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2015.2421974&rft_dat=%3Ccrossref_RIE%3E10_1109_TAP_2015_2421974%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7084189&rfr_iscdi=true |