A Memory-Efficient Formulation of the Unconditionally Stable FDTD Method for Solving Maxwell's Equations
An unconditionally stable finite-difference time-domain (FDTD) method based on the weighted Laguerre polynomials (WLP) for solving Maxwell's equations had been proposed. In this paper, a memory efficient modification to the proposed methodology is described. In this novel modification, the dive...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2007-12, Vol.55 (12), p.3729-3733 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3733 |
---|---|
container_issue | 12 |
container_start_page | 3729 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 55 |
creator | Yi, Yun Chen, Bin Sheng, Wei-Xing Pei, Yu-Ling |
description | An unconditionally stable finite-difference time-domain (FDTD) method based on the weighted Laguerre polynomials (WLP) for solving Maxwell's equations had been proposed. In this paper, a memory efficient modification to the proposed methodology is described. In this novel modification, the divergence theorem is introduced in the WLP-FDTD method, in which Maxwell's divergence equation replaces one of the curl equations. This leads to a more memory-efficient matrix equation and a more rapid computational speed. A numerical example considering a two dimensional (2-D) TE case is present to validate the efficiency of the proposed algorithm. |
doi_str_mv | 10.1109/TAP.2007.910499 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAP_2007_910499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4388139</ieee_id><sourcerecordid>2544850181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-7942e7cc3b971f58918242bf657b7ab98d367808d6e9ca3f06a7f25cbaabbc273</originalsourceid><addsrcrecordid>eNpdkM1LAzEQxYMoWD_OHrwEQTxtzcfuJjkW26qgKFjBW8imiY2kG0121f73plYUPA0z83uPmQfAEUZDjJE4n43uhwQhNhQYlUJsgQGuKl4QQvA2GCCEeSFI_bQL9lJ6yW3Jy3IAFiN4a5YhroqJtU4703ZwGuKy96pzoYXBwm5h4GOrQzt365HyfgUfOtV4A6fj2Tjru0WYQxsifAj-3bXP8FZ9fhjvzxKcvPXfRukA7Fjlkzn8qfvgcTqZXVwVN3eX1xejm0LTCnUFEyUxTGvaCIZtxQXmpCSNrSvWMNUIPqc144jPayO0ohbVillS6UapptGE0X1wtvF9jeGtN6mTS5d0Pka1JvRJclFjzjGpMnnyj3wJfcz_JSkwIZRRVGfofAPpGFKKxsrX6JYqriRGcp27zLnLde5yk3tWnP7YqqSVt1G12qU_meBcEL52Pt5wzhjzuy5pPo4K-gXTW4tB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912237306</pqid></control><display><type>article</type><title>A Memory-Efficient Formulation of the Unconditionally Stable FDTD Method for Solving Maxwell's Equations</title><source>IEEE Electronic Library (IEL)</source><creator>Yi, Yun ; Chen, Bin ; Sheng, Wei-Xing ; Pei, Yu-Ling</creator><creatorcontrib>Yi, Yun ; Chen, Bin ; Sheng, Wei-Xing ; Pei, Yu-Ling</creatorcontrib><description>An unconditionally stable finite-difference time-domain (FDTD) method based on the weighted Laguerre polynomials (WLP) for solving Maxwell's equations had been proposed. In this paper, a memory efficient modification to the proposed methodology is described. In this novel modification, the divergence theorem is introduced in the WLP-FDTD method, in which Maxwell's divergence equation replaces one of the curl equations. This leads to a more memory-efficient matrix equation and a more rapid computational speed. A numerical example considering a two dimensional (2-D) TE case is present to validate the efficiency of the proposed algorithm.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2007.910499</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Antennas ; Applied classical electromagnetism ; Differential equations ; Divergence ; Electromagnetic wave propagation, radiowave propagation ; Electromagnetism; electron and ion optics ; Exact sciences and technology ; Finite difference method ; Finite difference methods ; Finite difference time domain method ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematical model ; Mathematical models ; Maxwell equations ; Maxwell's equations ; Memory-efficient ; Physics ; Polynomials ; Scattering ; Sparse matrices ; Tellurium ; Time domain analysis ; Two dimensional displays ; unconditionally stable finite-difference time-domain ; weighted Laguerre polynomials</subject><ispartof>IEEE transactions on antennas and propagation, 2007-12, Vol.55 (12), p.3729-3733</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-7942e7cc3b971f58918242bf657b7ab98d367808d6e9ca3f06a7f25cbaabbc273</citedby><cites>FETCH-LOGICAL-c350t-7942e7cc3b971f58918242bf657b7ab98d367808d6e9ca3f06a7f25cbaabbc273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4388139$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4388139$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19889286$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yi, Yun</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Sheng, Wei-Xing</creatorcontrib><creatorcontrib>Pei, Yu-Ling</creatorcontrib><title>A Memory-Efficient Formulation of the Unconditionally Stable FDTD Method for Solving Maxwell's Equations</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>An unconditionally stable finite-difference time-domain (FDTD) method based on the weighted Laguerre polynomials (WLP) for solving Maxwell's equations had been proposed. In this paper, a memory efficient modification to the proposed methodology is described. In this novel modification, the divergence theorem is introduced in the WLP-FDTD method, in which Maxwell's divergence equation replaces one of the curl equations. This leads to a more memory-efficient matrix equation and a more rapid computational speed. A numerical example considering a two dimensional (2-D) TE case is present to validate the efficiency of the proposed algorithm.</description><subject>Algorithms</subject><subject>Antennas</subject><subject>Applied classical electromagnetism</subject><subject>Differential equations</subject><subject>Divergence</subject><subject>Electromagnetic wave propagation, radiowave propagation</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Exact sciences and technology</subject><subject>Finite difference method</subject><subject>Finite difference methods</subject><subject>Finite difference time domain method</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Maxwell equations</subject><subject>Maxwell's equations</subject><subject>Memory-efficient</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Scattering</subject><subject>Sparse matrices</subject><subject>Tellurium</subject><subject>Time domain analysis</subject><subject>Two dimensional displays</subject><subject>unconditionally stable finite-difference time-domain</subject><subject>weighted Laguerre polynomials</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1LAzEQxYMoWD_OHrwEQTxtzcfuJjkW26qgKFjBW8imiY2kG0121f73plYUPA0z83uPmQfAEUZDjJE4n43uhwQhNhQYlUJsgQGuKl4QQvA2GCCEeSFI_bQL9lJ6yW3Jy3IAFiN4a5YhroqJtU4703ZwGuKy96pzoYXBwm5h4GOrQzt365HyfgUfOtV4A6fj2Tjru0WYQxsifAj-3bXP8FZ9fhjvzxKcvPXfRukA7Fjlkzn8qfvgcTqZXVwVN3eX1xejm0LTCnUFEyUxTGvaCIZtxQXmpCSNrSvWMNUIPqc144jPayO0ohbVillS6UapptGE0X1wtvF9jeGtN6mTS5d0Pka1JvRJclFjzjGpMnnyj3wJfcz_JSkwIZRRVGfofAPpGFKKxsrX6JYqriRGcp27zLnLde5yk3tWnP7YqqSVt1G12qU_meBcEL52Pt5wzhjzuy5pPo4K-gXTW4tB</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Yi, Yun</creator><creator>Chen, Bin</creator><creator>Sheng, Wei-Xing</creator><creator>Pei, Yu-Ling</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20071201</creationdate><title>A Memory-Efficient Formulation of the Unconditionally Stable FDTD Method for Solving Maxwell's Equations</title><author>Yi, Yun ; Chen, Bin ; Sheng, Wei-Xing ; Pei, Yu-Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-7942e7cc3b971f58918242bf657b7ab98d367808d6e9ca3f06a7f25cbaabbc273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Antennas</topic><topic>Applied classical electromagnetism</topic><topic>Differential equations</topic><topic>Divergence</topic><topic>Electromagnetic wave propagation, radiowave propagation</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Exact sciences and technology</topic><topic>Finite difference method</topic><topic>Finite difference methods</topic><topic>Finite difference time domain method</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Maxwell equations</topic><topic>Maxwell's equations</topic><topic>Memory-efficient</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Scattering</topic><topic>Sparse matrices</topic><topic>Tellurium</topic><topic>Time domain analysis</topic><topic>Two dimensional displays</topic><topic>unconditionally stable finite-difference time-domain</topic><topic>weighted Laguerre polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, Yun</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Sheng, Wei-Xing</creatorcontrib><creatorcontrib>Pei, Yu-Ling</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yi, Yun</au><au>Chen, Bin</au><au>Sheng, Wei-Xing</au><au>Pei, Yu-Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Memory-Efficient Formulation of the Unconditionally Stable FDTD Method for Solving Maxwell's Equations</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2007-12-01</date><risdate>2007</risdate><volume>55</volume><issue>12</issue><spage>3729</spage><epage>3733</epage><pages>3729-3733</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>An unconditionally stable finite-difference time-domain (FDTD) method based on the weighted Laguerre polynomials (WLP) for solving Maxwell's equations had been proposed. In this paper, a memory efficient modification to the proposed methodology is described. In this novel modification, the divergence theorem is introduced in the WLP-FDTD method, in which Maxwell's divergence equation replaces one of the curl equations. This leads to a more memory-efficient matrix equation and a more rapid computational speed. A numerical example considering a two dimensional (2-D) TE case is present to validate the efficiency of the proposed algorithm.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAP.2007.910499</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2007-12, Vol.55 (12), p.3729-3733 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAP_2007_910499 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Antennas Applied classical electromagnetism Differential equations Divergence Electromagnetic wave propagation, radiowave propagation Electromagnetism electron and ion optics Exact sciences and technology Finite difference method Finite difference methods Finite difference time domain method Fundamental areas of phenomenology (including applications) Mathematical analysis Mathematical model Mathematical models Maxwell equations Maxwell's equations Memory-efficient Physics Polynomials Scattering Sparse matrices Tellurium Time domain analysis Two dimensional displays unconditionally stable finite-difference time-domain weighted Laguerre polynomials |
title | A Memory-Efficient Formulation of the Unconditionally Stable FDTD Method for Solving Maxwell's Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A33%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Memory-Efficient%20Formulation%20of%20the%20Unconditionally%20Stable%20FDTD%20Method%20for%20Solving%20Maxwell's%20Equations&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Yi,%20Yun&rft.date=2007-12-01&rft.volume=55&rft.issue=12&rft.spage=3729&rft.epage=3733&rft.pages=3729-3733&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2007.910499&rft_dat=%3Cproquest_RIE%3E2544850181%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912237306&rft_id=info:pmid/&rft_ieee_id=4388139&rfr_iscdi=true |