Synergetic Focal Loss for Imbalanced Classification in Federated XGBoost

Applying sparsity- and overfitting-aware eXtreme Gradient Boosting (XGBoost) for classification in federated learning allows many participants to train a series of trees collaboratively. Since various local multiclass distributions and global aggregation diversity, model performance plummets as conv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on artificial intelligence 2024-02, Vol.5 (2), p.647-660
Hauptverfasser: Tian, Jiao, Tsai, Pei-Wei, Zhang, Kai, Cai, Xinyi, Xiao, Hongwang, Yu, Ke, Zhao, Wenyu, Chen, Jinjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 660
container_issue 2
container_start_page 647
container_title IEEE transactions on artificial intelligence
container_volume 5
creator Tian, Jiao
Tsai, Pei-Wei
Zhang, Kai
Cai, Xinyi
Xiao, Hongwang
Yu, Ke
Zhao, Wenyu
Chen, Jinjun
description Applying sparsity- and overfitting-aware eXtreme Gradient Boosting (XGBoost) for classification in federated learning allows many participants to train a series of trees collaboratively. Since various local multiclass distributions and global aggregation diversity, model performance plummets as convergence slowly and accuracy decreases. Worse still, neither the participants nor the server can detect this problem and make timely adjustments. In this article, we provide a new local-global class imbalance inconsistency quantification and utilize softmax as the activation and focal loss, a dynamically scaled cross-entropy loss, in federated XGBoost to mitigate local class imbalance. Moreover, we propose a simple but effective hyperparameter determination strategy based on local data distribution to adjust the sample weights among noncommunicating participants, synergetic focal loss, to solve the inconsistency of local and global class imbalance, a unique characteristic of federated learning. This strategy is perfectly integrated into the original classification algorithm. It requires no additional detectors or information transmission. Furthermore, a dynamical for loop is designed to capture an optimum hyperparameter combination. Finally, we conduct comprehensive tabular- and image-based experiments to show that synergetic focal loss used in federated XGBoost achieves faster convergency and significant accuracy improvement. Simulation results prove the effectiveness of the proposed principle of configuring sample weights.
doi_str_mv 10.1109/TAI.2023.3254519
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAI_2023_3254519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10063985</ieee_id><sourcerecordid>10_1109_TAI_2023_3254519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c179t-39322a99c3f835db96e656463bfe1edbe675440974c28c76833d77ae50ecb3e63</originalsourceid><addsrcrecordid>eNpNkLFqwzAQhkVpoSHN3qGDXsCupLMka0xNnRgMHZpCNyPL56Li2EXykrevQzJk-g_--47jI-SZs5RzZl4P2yoVTEAKQmaSmzuyEsrwJJM5v7-ZH8kmxl_GmJBcCKFXZP95GjH84OwdLSdnB1pPMdJ-CrQ6tnawo8OOFoON0ffe2dlPI_UjLbHDYOel-969TVOcn8hDb4eIm2uuyVf5fij2Sf2xq4ptnTiuzZyAASGsMQ76HGTXGoVKqkxB2yPHrkWlZZYxozMncqdVDtBpbVEydC2ggjVhl7suLI8G7Ju_4I82nBrOmrOMZpHRnGU0VxkL8nJBPCLerDMFJpfwD4HlWjU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synergetic Focal Loss for Imbalanced Classification in Federated XGBoost</title><source>IEEE Electronic Library (IEL)</source><creator>Tian, Jiao ; Tsai, Pei-Wei ; Zhang, Kai ; Cai, Xinyi ; Xiao, Hongwang ; Yu, Ke ; Zhao, Wenyu ; Chen, Jinjun</creator><creatorcontrib>Tian, Jiao ; Tsai, Pei-Wei ; Zhang, Kai ; Cai, Xinyi ; Xiao, Hongwang ; Yu, Ke ; Zhao, Wenyu ; Chen, Jinjun</creatorcontrib><description>Applying sparsity- and overfitting-aware eXtreme Gradient Boosting (XGBoost) for classification in federated learning allows many participants to train a series of trees collaboratively. Since various local multiclass distributions and global aggregation diversity, model performance plummets as convergence slowly and accuracy decreases. Worse still, neither the participants nor the server can detect this problem and make timely adjustments. In this article, we provide a new local-global class imbalance inconsistency quantification and utilize softmax as the activation and focal loss, a dynamically scaled cross-entropy loss, in federated XGBoost to mitigate local class imbalance. Moreover, we propose a simple but effective hyperparameter determination strategy based on local data distribution to adjust the sample weights among noncommunicating participants, synergetic focal loss, to solve the inconsistency of local and global class imbalance, a unique characteristic of federated learning. This strategy is perfectly integrated into the original classification algorithm. It requires no additional detectors or information transmission. Furthermore, a dynamical for loop is designed to capture an optimum hyperparameter combination. Finally, we conduct comprehensive tabular- and image-based experiments to show that synergetic focal loss used in federated XGBoost achieves faster convergency and significant accuracy improvement. Simulation results prove the effectiveness of the proposed principle of configuring sample weights.</description><identifier>ISSN: 2691-4581</identifier><identifier>EISSN: 2691-4581</identifier><identifier>DOI: 10.1109/TAI.2023.3254519</identifier><identifier>CODEN: ITAICB</identifier><language>eng</language><publisher>IEEE</publisher><subject>Boosting ; Computational modeling ; Convergence ; Data models ; Federated learning ; focal loss ; Heuristic algorithms ; nonindependent and identical distribution (non-IID) ; Training ; XGBoost</subject><ispartof>IEEE transactions on artificial intelligence, 2024-02, Vol.5 (2), p.647-660</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c179t-39322a99c3f835db96e656463bfe1edbe675440974c28c76833d77ae50ecb3e63</citedby><cites>FETCH-LOGICAL-c179t-39322a99c3f835db96e656463bfe1edbe675440974c28c76833d77ae50ecb3e63</cites><orcidid>0000-0003-1677-9525 ; 0000-0001-5134-9286 ; 0000-0003-2079-6133 ; 0000-0001-6159-4525 ; 0000-0002-0324-1024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10063985$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10063985$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tian, Jiao</creatorcontrib><creatorcontrib>Tsai, Pei-Wei</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Cai, Xinyi</creatorcontrib><creatorcontrib>Xiao, Hongwang</creatorcontrib><creatorcontrib>Yu, Ke</creatorcontrib><creatorcontrib>Zhao, Wenyu</creatorcontrib><creatorcontrib>Chen, Jinjun</creatorcontrib><title>Synergetic Focal Loss for Imbalanced Classification in Federated XGBoost</title><title>IEEE transactions on artificial intelligence</title><addtitle>TAI</addtitle><description>Applying sparsity- and overfitting-aware eXtreme Gradient Boosting (XGBoost) for classification in federated learning allows many participants to train a series of trees collaboratively. Since various local multiclass distributions and global aggregation diversity, model performance plummets as convergence slowly and accuracy decreases. Worse still, neither the participants nor the server can detect this problem and make timely adjustments. In this article, we provide a new local-global class imbalance inconsistency quantification and utilize softmax as the activation and focal loss, a dynamically scaled cross-entropy loss, in federated XGBoost to mitigate local class imbalance. Moreover, we propose a simple but effective hyperparameter determination strategy based on local data distribution to adjust the sample weights among noncommunicating participants, synergetic focal loss, to solve the inconsistency of local and global class imbalance, a unique characteristic of federated learning. This strategy is perfectly integrated into the original classification algorithm. It requires no additional detectors or information transmission. Furthermore, a dynamical for loop is designed to capture an optimum hyperparameter combination. Finally, we conduct comprehensive tabular- and image-based experiments to show that synergetic focal loss used in federated XGBoost achieves faster convergency and significant accuracy improvement. Simulation results prove the effectiveness of the proposed principle of configuring sample weights.</description><subject>Boosting</subject><subject>Computational modeling</subject><subject>Convergence</subject><subject>Data models</subject><subject>Federated learning</subject><subject>focal loss</subject><subject>Heuristic algorithms</subject><subject>nonindependent and identical distribution (non-IID)</subject><subject>Training</subject><subject>XGBoost</subject><issn>2691-4581</issn><issn>2691-4581</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkLFqwzAQhkVpoSHN3qGDXsCupLMka0xNnRgMHZpCNyPL56Li2EXykrevQzJk-g_--47jI-SZs5RzZl4P2yoVTEAKQmaSmzuyEsrwJJM5v7-ZH8kmxl_GmJBcCKFXZP95GjH84OwdLSdnB1pPMdJ-CrQ6tnawo8OOFoON0ffe2dlPI_UjLbHDYOel-969TVOcn8hDb4eIm2uuyVf5fij2Sf2xq4ptnTiuzZyAASGsMQ76HGTXGoVKqkxB2yPHrkWlZZYxozMncqdVDtBpbVEydC2ggjVhl7suLI8G7Ju_4I82nBrOmrOMZpHRnGU0VxkL8nJBPCLerDMFJpfwD4HlWjU</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Tian, Jiao</creator><creator>Tsai, Pei-Wei</creator><creator>Zhang, Kai</creator><creator>Cai, Xinyi</creator><creator>Xiao, Hongwang</creator><creator>Yu, Ke</creator><creator>Zhao, Wenyu</creator><creator>Chen, Jinjun</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1677-9525</orcidid><orcidid>https://orcid.org/0000-0001-5134-9286</orcidid><orcidid>https://orcid.org/0000-0003-2079-6133</orcidid><orcidid>https://orcid.org/0000-0001-6159-4525</orcidid><orcidid>https://orcid.org/0000-0002-0324-1024</orcidid></search><sort><creationdate>202402</creationdate><title>Synergetic Focal Loss for Imbalanced Classification in Federated XGBoost</title><author>Tian, Jiao ; Tsai, Pei-Wei ; Zhang, Kai ; Cai, Xinyi ; Xiao, Hongwang ; Yu, Ke ; Zhao, Wenyu ; Chen, Jinjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c179t-39322a99c3f835db96e656463bfe1edbe675440974c28c76833d77ae50ecb3e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boosting</topic><topic>Computational modeling</topic><topic>Convergence</topic><topic>Data models</topic><topic>Federated learning</topic><topic>focal loss</topic><topic>Heuristic algorithms</topic><topic>nonindependent and identical distribution (non-IID)</topic><topic>Training</topic><topic>XGBoost</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Jiao</creatorcontrib><creatorcontrib>Tsai, Pei-Wei</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Cai, Xinyi</creatorcontrib><creatorcontrib>Xiao, Hongwang</creatorcontrib><creatorcontrib>Yu, Ke</creatorcontrib><creatorcontrib>Zhao, Wenyu</creatorcontrib><creatorcontrib>Chen, Jinjun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tian, Jiao</au><au>Tsai, Pei-Wei</au><au>Zhang, Kai</au><au>Cai, Xinyi</au><au>Xiao, Hongwang</au><au>Yu, Ke</au><au>Zhao, Wenyu</au><au>Chen, Jinjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergetic Focal Loss for Imbalanced Classification in Federated XGBoost</atitle><jtitle>IEEE transactions on artificial intelligence</jtitle><stitle>TAI</stitle><date>2024-02</date><risdate>2024</risdate><volume>5</volume><issue>2</issue><spage>647</spage><epage>660</epage><pages>647-660</pages><issn>2691-4581</issn><eissn>2691-4581</eissn><coden>ITAICB</coden><abstract>Applying sparsity- and overfitting-aware eXtreme Gradient Boosting (XGBoost) for classification in federated learning allows many participants to train a series of trees collaboratively. Since various local multiclass distributions and global aggregation diversity, model performance plummets as convergence slowly and accuracy decreases. Worse still, neither the participants nor the server can detect this problem and make timely adjustments. In this article, we provide a new local-global class imbalance inconsistency quantification and utilize softmax as the activation and focal loss, a dynamically scaled cross-entropy loss, in federated XGBoost to mitigate local class imbalance. Moreover, we propose a simple but effective hyperparameter determination strategy based on local data distribution to adjust the sample weights among noncommunicating participants, synergetic focal loss, to solve the inconsistency of local and global class imbalance, a unique characteristic of federated learning. This strategy is perfectly integrated into the original classification algorithm. It requires no additional detectors or information transmission. Furthermore, a dynamical for loop is designed to capture an optimum hyperparameter combination. Finally, we conduct comprehensive tabular- and image-based experiments to show that synergetic focal loss used in federated XGBoost achieves faster convergency and significant accuracy improvement. Simulation results prove the effectiveness of the proposed principle of configuring sample weights.</abstract><pub>IEEE</pub><doi>10.1109/TAI.2023.3254519</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1677-9525</orcidid><orcidid>https://orcid.org/0000-0001-5134-9286</orcidid><orcidid>https://orcid.org/0000-0003-2079-6133</orcidid><orcidid>https://orcid.org/0000-0001-6159-4525</orcidid><orcidid>https://orcid.org/0000-0002-0324-1024</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2691-4581
ispartof IEEE transactions on artificial intelligence, 2024-02, Vol.5 (2), p.647-660
issn 2691-4581
2691-4581
language eng
recordid cdi_crossref_primary_10_1109_TAI_2023_3254519
source IEEE Electronic Library (IEL)
subjects Boosting
Computational modeling
Convergence
Data models
Federated learning
focal loss
Heuristic algorithms
nonindependent and identical distribution (non-IID)
Training
XGBoost
title Synergetic Focal Loss for Imbalanced Classification in Federated XGBoost
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A06%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergetic%20Focal%20Loss%20for%20Imbalanced%20Classification%20in%20Federated%20XGBoost&rft.jtitle=IEEE%20transactions%20on%20artificial%20intelligence&rft.au=Tian,%20Jiao&rft.date=2024-02&rft.volume=5&rft.issue=2&rft.spage=647&rft.epage=660&rft.pages=647-660&rft.issn=2691-4581&rft.eissn=2691-4581&rft.coden=ITAICB&rft_id=info:doi/10.1109/TAI.2023.3254519&rft_dat=%3Ccrossref_RIE%3E10_1109_TAI_2023_3254519%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10063985&rfr_iscdi=true