NEMO: A Database for Emotion Analysis Using Functional Near-Infrared Spectroscopy

We present a dataset for the analysis of human affective states using functional near-infrared spectroscopy (fNIRS). Data were recorded from thirty-one participants who engaged in two tasks. In the emotional perception task the participants passively viewed images sampled from the standard internati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on affective computing 2024-07, Vol.15 (3), p.1166-1177
Hauptverfasser: Spape, Michiel, Makela, Kalle, Ruotsalo, Tuukka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1177
container_issue 3
container_start_page 1166
container_title IEEE transactions on affective computing
container_volume 15
creator Spape, Michiel
Makela, Kalle
Ruotsalo, Tuukka
description We present a dataset for the analysis of human affective states using functional near-infrared spectroscopy (fNIRS). Data were recorded from thirty-one participants who engaged in two tasks. In the emotional perception task the participants passively viewed images sampled from the standard international affective picture system database, which provided ground-truth valence and arousal annotation for the stimuli. In the affective imagery task the participants actively imagined emotional scenarios followed by rating these for subjective valence and arousal. Correlates between the fNIRS signal and the valence-arousal ratings were investigated to estimate the validity of the dataset. Source-code and summaries are provided for a processing pipeline, brain activity group analysis, and estimating baseline classification performance. For classification, prediction experiments are conducted for single-trial 4-class classification of arousal and valence as well as cross-participant classifications, and comparisons between high and low arousal variants of the valence prediction tasks. Finally, classification results are presented for subject-specific and cross-participant models. The dataset is made publicly available to encourage research on affective decoding and downstream applications using fNIRS data.
doi_str_mv 10.1109/TAFFC.2023.3315971
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAFFC_2023_3315971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10286101</ieee_id><sourcerecordid>3101334496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-69d1bbec5008d659d5e61ac0aab12c192ae4d4f4329ace885d4e86cd1849eae73</originalsourceid><addsrcrecordid>eNpNkM1PwkAQxTdGEwnyDxgPm3gu7lc_1luDVEkQYoTzZrqdmhJo62458N_bCgfmMpPJey8vP0IeOZtyzvTLJs2y2VQwIadS8lDH_IaMuFY6kEyFt1f3PZl4v2P9SCkjEY_I12r-uX6lKX2DDnLwSMvG0fmh6aqmpmkN-5OvPN36qv6h2bG2wx_2dIXggkVdOnBY0O8Wbecab5v29EDuSth7nFz2mGyz-Wb2ESzX74tZugysUHEXRLrgeY42ZCwpolAXIUYcLAPIubBcC0BVqFJJocFikoSFwiSyBU-URsBYjsnzObd1ze8RfWd2zdH13byRnHEpldJRrxJnle3reYelaV11AHcynJmBnvmnZwZ65kKvNz2dTRUiXhlEEg3Jf95faro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101334496</pqid></control><display><type>article</type><title>NEMO: A Database for Emotion Analysis Using Functional Near-Infrared Spectroscopy</title><source>IEEE Electronic Library (IEL)</source><creator>Spape, Michiel ; Makela, Kalle ; Ruotsalo, Tuukka</creator><creatorcontrib>Spape, Michiel ; Makela, Kalle ; Ruotsalo, Tuukka</creatorcontrib><description>We present a dataset for the analysis of human affective states using functional near-infrared spectroscopy (fNIRS). Data were recorded from thirty-one participants who engaged in two tasks. In the emotional perception task the participants passively viewed images sampled from the standard international affective picture system database, which provided ground-truth valence and arousal annotation for the stimuli. In the affective imagery task the participants actively imagined emotional scenarios followed by rating these for subjective valence and arousal. Correlates between the fNIRS signal and the valence-arousal ratings were investigated to estimate the validity of the dataset. Source-code and summaries are provided for a processing pipeline, brain activity group analysis, and estimating baseline classification performance. For classification, prediction experiments are conducted for single-trial 4-class classification of arousal and valence as well as cross-participant classifications, and comparisons between high and low arousal variants of the valence prediction tasks. Finally, classification results are presented for subject-specific and cross-participant models. The dataset is made publicly available to encourage research on affective decoding and downstream applications using fNIRS data.</description><identifier>ISSN: 1949-3045</identifier><identifier>EISSN: 1949-3045</identifier><identifier>DOI: 10.1109/TAFFC.2023.3315971</identifier><identifier>CODEN: ITACBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Affect (Psychology) ; Affective computing ; Annotations ; Arousal ; Biomedical monitoring ; Classification ; Datasets ; Decoding ; Electroencephalography ; emotion classification ; FNIRS ; Functional near-infrared spectroscopy ; Infrared analysis ; Infrared spectra ; Infrared spectroscopy ; Medical imaging ; Near infrared radiation ; Neural activity ; Neuroimaging ; pattern classification ; signal processing ; Spectroscopic analysis ; Spectrum analysis ; Task analysis</subject><ispartof>IEEE transactions on affective computing, 2024-07, Vol.15 (3), p.1166-1177</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-69d1bbec5008d659d5e61ac0aab12c192ae4d4f4329ace885d4e86cd1849eae73</cites><orcidid>0000-0002-3126-1380 ; 0009-0005-5706-0842 ; 0000-0002-2203-4928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10286101$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10286101$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Spape, Michiel</creatorcontrib><creatorcontrib>Makela, Kalle</creatorcontrib><creatorcontrib>Ruotsalo, Tuukka</creatorcontrib><title>NEMO: A Database for Emotion Analysis Using Functional Near-Infrared Spectroscopy</title><title>IEEE transactions on affective computing</title><addtitle>TAFFC</addtitle><description>We present a dataset for the analysis of human affective states using functional near-infrared spectroscopy (fNIRS). Data were recorded from thirty-one participants who engaged in two tasks. In the emotional perception task the participants passively viewed images sampled from the standard international affective picture system database, which provided ground-truth valence and arousal annotation for the stimuli. In the affective imagery task the participants actively imagined emotional scenarios followed by rating these for subjective valence and arousal. Correlates between the fNIRS signal and the valence-arousal ratings were investigated to estimate the validity of the dataset. Source-code and summaries are provided for a processing pipeline, brain activity group analysis, and estimating baseline classification performance. For classification, prediction experiments are conducted for single-trial 4-class classification of arousal and valence as well as cross-participant classifications, and comparisons between high and low arousal variants of the valence prediction tasks. Finally, classification results are presented for subject-specific and cross-participant models. The dataset is made publicly available to encourage research on affective decoding and downstream applications using fNIRS data.</description><subject>Affect (Psychology)</subject><subject>Affective computing</subject><subject>Annotations</subject><subject>Arousal</subject><subject>Biomedical monitoring</subject><subject>Classification</subject><subject>Datasets</subject><subject>Decoding</subject><subject>Electroencephalography</subject><subject>emotion classification</subject><subject>FNIRS</subject><subject>Functional near-infrared spectroscopy</subject><subject>Infrared analysis</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Medical imaging</subject><subject>Near infrared radiation</subject><subject>Neural activity</subject><subject>Neuroimaging</subject><subject>pattern classification</subject><subject>signal processing</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><subject>Task analysis</subject><issn>1949-3045</issn><issn>1949-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1PwkAQxTdGEwnyDxgPm3gu7lc_1luDVEkQYoTzZrqdmhJo62458N_bCgfmMpPJey8vP0IeOZtyzvTLJs2y2VQwIadS8lDH_IaMuFY6kEyFt1f3PZl4v2P9SCkjEY_I12r-uX6lKX2DDnLwSMvG0fmh6aqmpmkN-5OvPN36qv6h2bG2wx_2dIXggkVdOnBY0O8Wbecab5v29EDuSth7nFz2mGyz-Wb2ESzX74tZugysUHEXRLrgeY42ZCwpolAXIUYcLAPIubBcC0BVqFJJocFikoSFwiSyBU-URsBYjsnzObd1ze8RfWd2zdH13byRnHEpldJRrxJnle3reYelaV11AHcynJmBnvmnZwZ65kKvNz2dTRUiXhlEEg3Jf95faro</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Spape, Michiel</creator><creator>Makela, Kalle</creator><creator>Ruotsalo, Tuukka</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3126-1380</orcidid><orcidid>https://orcid.org/0009-0005-5706-0842</orcidid><orcidid>https://orcid.org/0000-0002-2203-4928</orcidid></search><sort><creationdate>20240701</creationdate><title>NEMO: A Database for Emotion Analysis Using Functional Near-Infrared Spectroscopy</title><author>Spape, Michiel ; Makela, Kalle ; Ruotsalo, Tuukka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-69d1bbec5008d659d5e61ac0aab12c192ae4d4f4329ace885d4e86cd1849eae73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Affect (Psychology)</topic><topic>Affective computing</topic><topic>Annotations</topic><topic>Arousal</topic><topic>Biomedical monitoring</topic><topic>Classification</topic><topic>Datasets</topic><topic>Decoding</topic><topic>Electroencephalography</topic><topic>emotion classification</topic><topic>FNIRS</topic><topic>Functional near-infrared spectroscopy</topic><topic>Infrared analysis</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Medical imaging</topic><topic>Near infrared radiation</topic><topic>Neural activity</topic><topic>Neuroimaging</topic><topic>pattern classification</topic><topic>signal processing</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spape, Michiel</creatorcontrib><creatorcontrib>Makela, Kalle</creatorcontrib><creatorcontrib>Ruotsalo, Tuukka</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on affective computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Spape, Michiel</au><au>Makela, Kalle</au><au>Ruotsalo, Tuukka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NEMO: A Database for Emotion Analysis Using Functional Near-Infrared Spectroscopy</atitle><jtitle>IEEE transactions on affective computing</jtitle><stitle>TAFFC</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>15</volume><issue>3</issue><spage>1166</spage><epage>1177</epage><pages>1166-1177</pages><issn>1949-3045</issn><eissn>1949-3045</eissn><coden>ITACBQ</coden><abstract>We present a dataset for the analysis of human affective states using functional near-infrared spectroscopy (fNIRS). Data were recorded from thirty-one participants who engaged in two tasks. In the emotional perception task the participants passively viewed images sampled from the standard international affective picture system database, which provided ground-truth valence and arousal annotation for the stimuli. In the affective imagery task the participants actively imagined emotional scenarios followed by rating these for subjective valence and arousal. Correlates between the fNIRS signal and the valence-arousal ratings were investigated to estimate the validity of the dataset. Source-code and summaries are provided for a processing pipeline, brain activity group analysis, and estimating baseline classification performance. For classification, prediction experiments are conducted for single-trial 4-class classification of arousal and valence as well as cross-participant classifications, and comparisons between high and low arousal variants of the valence prediction tasks. Finally, classification results are presented for subject-specific and cross-participant models. The dataset is made publicly available to encourage research on affective decoding and downstream applications using fNIRS data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TAFFC.2023.3315971</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3126-1380</orcidid><orcidid>https://orcid.org/0009-0005-5706-0842</orcidid><orcidid>https://orcid.org/0000-0002-2203-4928</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3045
ispartof IEEE transactions on affective computing, 2024-07, Vol.15 (3), p.1166-1177
issn 1949-3045
1949-3045
language eng
recordid cdi_crossref_primary_10_1109_TAFFC_2023_3315971
source IEEE Electronic Library (IEL)
subjects Affect (Psychology)
Affective computing
Annotations
Arousal
Biomedical monitoring
Classification
Datasets
Decoding
Electroencephalography
emotion classification
FNIRS
Functional near-infrared spectroscopy
Infrared analysis
Infrared spectra
Infrared spectroscopy
Medical imaging
Near infrared radiation
Neural activity
Neuroimaging
pattern classification
signal processing
Spectroscopic analysis
Spectrum analysis
Task analysis
title NEMO: A Database for Emotion Analysis Using Functional Near-Infrared Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T07%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NEMO:%20A%20Database%20for%20Emotion%20Analysis%20Using%20Functional%20Near-Infrared%20Spectroscopy&rft.jtitle=IEEE%20transactions%20on%20affective%20computing&rft.au=Spape,%20Michiel&rft.date=2024-07-01&rft.volume=15&rft.issue=3&rft.spage=1166&rft.epage=1177&rft.pages=1166-1177&rft.issn=1949-3045&rft.eissn=1949-3045&rft.coden=ITACBQ&rft_id=info:doi/10.1109/TAFFC.2023.3315971&rft_dat=%3Cproquest_RIE%3E3101334496%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3101334496&rft_id=info:pmid/&rft_ieee_id=10286101&rfr_iscdi=true