NEMO: A Database for Emotion Analysis Using Functional Near-Infrared Spectroscopy
We present a dataset for the analysis of human affective states using functional near-infrared spectroscopy (fNIRS). Data were recorded from thirty-one participants who engaged in two tasks. In the emotional perception task the participants passively viewed images sampled from the standard internati...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on affective computing 2024-07, Vol.15 (3), p.1166-1177 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1177 |
---|---|
container_issue | 3 |
container_start_page | 1166 |
container_title | IEEE transactions on affective computing |
container_volume | 15 |
creator | Spape, Michiel Makela, Kalle Ruotsalo, Tuukka |
description | We present a dataset for the analysis of human affective states using functional near-infrared spectroscopy (fNIRS). Data were recorded from thirty-one participants who engaged in two tasks. In the emotional perception task the participants passively viewed images sampled from the standard international affective picture system database, which provided ground-truth valence and arousal annotation for the stimuli. In the affective imagery task the participants actively imagined emotional scenarios followed by rating these for subjective valence and arousal. Correlates between the fNIRS signal and the valence-arousal ratings were investigated to estimate the validity of the dataset. Source-code and summaries are provided for a processing pipeline, brain activity group analysis, and estimating baseline classification performance. For classification, prediction experiments are conducted for single-trial 4-class classification of arousal and valence as well as cross-participant classifications, and comparisons between high and low arousal variants of the valence prediction tasks. Finally, classification results are presented for subject-specific and cross-participant models. The dataset is made publicly available to encourage research on affective decoding and downstream applications using fNIRS data. |
doi_str_mv | 10.1109/TAFFC.2023.3315971 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAFFC_2023_3315971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10286101</ieee_id><sourcerecordid>3101334496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-69d1bbec5008d659d5e61ac0aab12c192ae4d4f4329ace885d4e86cd1849eae73</originalsourceid><addsrcrecordid>eNpNkM1PwkAQxTdGEwnyDxgPm3gu7lc_1luDVEkQYoTzZrqdmhJo62458N_bCgfmMpPJey8vP0IeOZtyzvTLJs2y2VQwIadS8lDH_IaMuFY6kEyFt1f3PZl4v2P9SCkjEY_I12r-uX6lKX2DDnLwSMvG0fmh6aqmpmkN-5OvPN36qv6h2bG2wx_2dIXggkVdOnBY0O8Wbecab5v29EDuSth7nFz2mGyz-Wb2ESzX74tZugysUHEXRLrgeY42ZCwpolAXIUYcLAPIubBcC0BVqFJJocFikoSFwiSyBU-URsBYjsnzObd1ze8RfWd2zdH13byRnHEpldJRrxJnle3reYelaV11AHcynJmBnvmnZwZ65kKvNz2dTRUiXhlEEg3Jf95faro</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101334496</pqid></control><display><type>article</type><title>NEMO: A Database for Emotion Analysis Using Functional Near-Infrared Spectroscopy</title><source>IEEE Electronic Library (IEL)</source><creator>Spape, Michiel ; Makela, Kalle ; Ruotsalo, Tuukka</creator><creatorcontrib>Spape, Michiel ; Makela, Kalle ; Ruotsalo, Tuukka</creatorcontrib><description>We present a dataset for the analysis of human affective states using functional near-infrared spectroscopy (fNIRS). Data were recorded from thirty-one participants who engaged in two tasks. In the emotional perception task the participants passively viewed images sampled from the standard international affective picture system database, which provided ground-truth valence and arousal annotation for the stimuli. In the affective imagery task the participants actively imagined emotional scenarios followed by rating these for subjective valence and arousal. Correlates between the fNIRS signal and the valence-arousal ratings were investigated to estimate the validity of the dataset. Source-code and summaries are provided for a processing pipeline, brain activity group analysis, and estimating baseline classification performance. For classification, prediction experiments are conducted for single-trial 4-class classification of arousal and valence as well as cross-participant classifications, and comparisons between high and low arousal variants of the valence prediction tasks. Finally, classification results are presented for subject-specific and cross-participant models. The dataset is made publicly available to encourage research on affective decoding and downstream applications using fNIRS data.</description><identifier>ISSN: 1949-3045</identifier><identifier>EISSN: 1949-3045</identifier><identifier>DOI: 10.1109/TAFFC.2023.3315971</identifier><identifier>CODEN: ITACBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Affect (Psychology) ; Affective computing ; Annotations ; Arousal ; Biomedical monitoring ; Classification ; Datasets ; Decoding ; Electroencephalography ; emotion classification ; FNIRS ; Functional near-infrared spectroscopy ; Infrared analysis ; Infrared spectra ; Infrared spectroscopy ; Medical imaging ; Near infrared radiation ; Neural activity ; Neuroimaging ; pattern classification ; signal processing ; Spectroscopic analysis ; Spectrum analysis ; Task analysis</subject><ispartof>IEEE transactions on affective computing, 2024-07, Vol.15 (3), p.1166-1177</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-69d1bbec5008d659d5e61ac0aab12c192ae4d4f4329ace885d4e86cd1849eae73</cites><orcidid>0000-0002-3126-1380 ; 0009-0005-5706-0842 ; 0000-0002-2203-4928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10286101$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10286101$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Spape, Michiel</creatorcontrib><creatorcontrib>Makela, Kalle</creatorcontrib><creatorcontrib>Ruotsalo, Tuukka</creatorcontrib><title>NEMO: A Database for Emotion Analysis Using Functional Near-Infrared Spectroscopy</title><title>IEEE transactions on affective computing</title><addtitle>TAFFC</addtitle><description>We present a dataset for the analysis of human affective states using functional near-infrared spectroscopy (fNIRS). Data were recorded from thirty-one participants who engaged in two tasks. In the emotional perception task the participants passively viewed images sampled from the standard international affective picture system database, which provided ground-truth valence and arousal annotation for the stimuli. In the affective imagery task the participants actively imagined emotional scenarios followed by rating these for subjective valence and arousal. Correlates between the fNIRS signal and the valence-arousal ratings were investigated to estimate the validity of the dataset. Source-code and summaries are provided for a processing pipeline, brain activity group analysis, and estimating baseline classification performance. For classification, prediction experiments are conducted for single-trial 4-class classification of arousal and valence as well as cross-participant classifications, and comparisons between high and low arousal variants of the valence prediction tasks. Finally, classification results are presented for subject-specific and cross-participant models. The dataset is made publicly available to encourage research on affective decoding and downstream applications using fNIRS data.</description><subject>Affect (Psychology)</subject><subject>Affective computing</subject><subject>Annotations</subject><subject>Arousal</subject><subject>Biomedical monitoring</subject><subject>Classification</subject><subject>Datasets</subject><subject>Decoding</subject><subject>Electroencephalography</subject><subject>emotion classification</subject><subject>FNIRS</subject><subject>Functional near-infrared spectroscopy</subject><subject>Infrared analysis</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Medical imaging</subject><subject>Near infrared radiation</subject><subject>Neural activity</subject><subject>Neuroimaging</subject><subject>pattern classification</subject><subject>signal processing</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><subject>Task analysis</subject><issn>1949-3045</issn><issn>1949-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1PwkAQxTdGEwnyDxgPm3gu7lc_1luDVEkQYoTzZrqdmhJo62458N_bCgfmMpPJey8vP0IeOZtyzvTLJs2y2VQwIadS8lDH_IaMuFY6kEyFt1f3PZl4v2P9SCkjEY_I12r-uX6lKX2DDnLwSMvG0fmh6aqmpmkN-5OvPN36qv6h2bG2wx_2dIXggkVdOnBY0O8Wbecab5v29EDuSth7nFz2mGyz-Wb2ESzX74tZugysUHEXRLrgeY42ZCwpolAXIUYcLAPIubBcC0BVqFJJocFikoSFwiSyBU-URsBYjsnzObd1ze8RfWd2zdH13byRnHEpldJRrxJnle3reYelaV11AHcynJmBnvmnZwZ65kKvNz2dTRUiXhlEEg3Jf95faro</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Spape, Michiel</creator><creator>Makela, Kalle</creator><creator>Ruotsalo, Tuukka</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3126-1380</orcidid><orcidid>https://orcid.org/0009-0005-5706-0842</orcidid><orcidid>https://orcid.org/0000-0002-2203-4928</orcidid></search><sort><creationdate>20240701</creationdate><title>NEMO: A Database for Emotion Analysis Using Functional Near-Infrared Spectroscopy</title><author>Spape, Michiel ; Makela, Kalle ; Ruotsalo, Tuukka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-69d1bbec5008d659d5e61ac0aab12c192ae4d4f4329ace885d4e86cd1849eae73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Affect (Psychology)</topic><topic>Affective computing</topic><topic>Annotations</topic><topic>Arousal</topic><topic>Biomedical monitoring</topic><topic>Classification</topic><topic>Datasets</topic><topic>Decoding</topic><topic>Electroencephalography</topic><topic>emotion classification</topic><topic>FNIRS</topic><topic>Functional near-infrared spectroscopy</topic><topic>Infrared analysis</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Medical imaging</topic><topic>Near infrared radiation</topic><topic>Neural activity</topic><topic>Neuroimaging</topic><topic>pattern classification</topic><topic>signal processing</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spape, Michiel</creatorcontrib><creatorcontrib>Makela, Kalle</creatorcontrib><creatorcontrib>Ruotsalo, Tuukka</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on affective computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Spape, Michiel</au><au>Makela, Kalle</au><au>Ruotsalo, Tuukka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NEMO: A Database for Emotion Analysis Using Functional Near-Infrared Spectroscopy</atitle><jtitle>IEEE transactions on affective computing</jtitle><stitle>TAFFC</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>15</volume><issue>3</issue><spage>1166</spage><epage>1177</epage><pages>1166-1177</pages><issn>1949-3045</issn><eissn>1949-3045</eissn><coden>ITACBQ</coden><abstract>We present a dataset for the analysis of human affective states using functional near-infrared spectroscopy (fNIRS). Data were recorded from thirty-one participants who engaged in two tasks. In the emotional perception task the participants passively viewed images sampled from the standard international affective picture system database, which provided ground-truth valence and arousal annotation for the stimuli. In the affective imagery task the participants actively imagined emotional scenarios followed by rating these for subjective valence and arousal. Correlates between the fNIRS signal and the valence-arousal ratings were investigated to estimate the validity of the dataset. Source-code and summaries are provided for a processing pipeline, brain activity group analysis, and estimating baseline classification performance. For classification, prediction experiments are conducted for single-trial 4-class classification of arousal and valence as well as cross-participant classifications, and comparisons between high and low arousal variants of the valence prediction tasks. Finally, classification results are presented for subject-specific and cross-participant models. The dataset is made publicly available to encourage research on affective decoding and downstream applications using fNIRS data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TAFFC.2023.3315971</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3126-1380</orcidid><orcidid>https://orcid.org/0009-0005-5706-0842</orcidid><orcidid>https://orcid.org/0000-0002-2203-4928</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3045 |
ispartof | IEEE transactions on affective computing, 2024-07, Vol.15 (3), p.1166-1177 |
issn | 1949-3045 1949-3045 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAFFC_2023_3315971 |
source | IEEE Electronic Library (IEL) |
subjects | Affect (Psychology) Affective computing Annotations Arousal Biomedical monitoring Classification Datasets Decoding Electroencephalography emotion classification FNIRS Functional near-infrared spectroscopy Infrared analysis Infrared spectra Infrared spectroscopy Medical imaging Near infrared radiation Neural activity Neuroimaging pattern classification signal processing Spectroscopic analysis Spectrum analysis Task analysis |
title | NEMO: A Database for Emotion Analysis Using Functional Near-Infrared Spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T07%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NEMO:%20A%20Database%20for%20Emotion%20Analysis%20Using%20Functional%20Near-Infrared%20Spectroscopy&rft.jtitle=IEEE%20transactions%20on%20affective%20computing&rft.au=Spape,%20Michiel&rft.date=2024-07-01&rft.volume=15&rft.issue=3&rft.spage=1166&rft.epage=1177&rft.pages=1166-1177&rft.issn=1949-3045&rft.eissn=1949-3045&rft.coden=ITACBQ&rft_id=info:doi/10.1109/TAFFC.2023.3315971&rft_dat=%3Cproquest_RIE%3E3101334496%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3101334496&rft_id=info:pmid/&rft_ieee_id=10286101&rfr_iscdi=true |