FiToViz: A Visualisation Approach for Real-Time Risk Situation Awareness

People often face risk-prone situations, that range from a mild event to a severe, life-threatening scenario. Risk situations stem from a number of different scenarios: a health condition, a hazard situation due to a natural disaster, a dangerous situation because one is being subject to a crime or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on affective computing 2018-07, Vol.9 (3), p.372-382
Hauptverfasser: Lopez-Cuevas, Armando, Medina-Perez, Miguel Angel, Monroy, Raul, Ramirez-Marquez, Jose Emmanuel, Trejo, Luis A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 382
container_issue 3
container_start_page 372
container_title IEEE transactions on affective computing
container_volume 9
creator Lopez-Cuevas, Armando
Medina-Perez, Miguel Angel
Monroy, Raul
Ramirez-Marquez, Jose Emmanuel
Trejo, Luis A.
description People often face risk-prone situations, that range from a mild event to a severe, life-threatening scenario. Risk situations stem from a number of different scenarios: a health condition, a hazard situation due to a natural disaster, a dangerous situation because one is being subject to a crime or physical violence, among others. The lack of a prompt response, calling for assistance, may severely worsen the consequences. In this paper, we propose a novel visualisation method to track and to identify, in real-time, when a person is under a risk-prone situation. Our visualisation model is capable of providing a decision maker a visual description of the physiological behaviour of an individual, or a group thereof; through it, the decision maker may infer whether further assistance is required, if a risky situation is in progress. Our visualisation is leveraged with a traffic light model of a one-class classifier. This combination allows us to train the decision maker into visualising correct and potential risky or abnormal behaviour.
doi_str_mv 10.1109/TAFFC.2017.2741478
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAFFC_2017_2741478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8013066</ieee_id><sourcerecordid>2117158826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-64f892040cc1770116d7d3956660954ae5979a39725be2fb46e5e0cffa7f333e3</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWGq_gF4CnrfmfzbeluJaoSDUtdeQbieY2nZrsovop3driziXN4f3Zh4_hK4pGVNKzF1VlOVkzAjVY6YFFTo_QwNqhMk4EfL8336JRimtST-cc8X0AE3LUDWL8H2PC7wIqXObkFwbmh0u9vvYuPoN-ybiObhNVoUt4HlI7_gltN3J9eki7CClK3Th3SbB6KRD9Fo-VJNpNnt-fJoUs6zm3LSZEj43jAhS11RrQqla6RU3UilFjBQOpNHGcaOZXALzS6FAAqm9d9r3nYEP0e3xbt_uo4PU2nXTxV3_0jJKNZV5zlTvYkdXHZuUIni7j2Hr4pelxB6g2V9o9gDNnqD1oZtjKADAXyAnlBOl-A-dF2Yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117158826</pqid></control><display><type>article</type><title>FiToViz: A Visualisation Approach for Real-Time Risk Situation Awareness</title><source>IEEE Electronic Library (IEL)</source><creator>Lopez-Cuevas, Armando ; Medina-Perez, Miguel Angel ; Monroy, Raul ; Ramirez-Marquez, Jose Emmanuel ; Trejo, Luis A.</creator><creatorcontrib>Lopez-Cuevas, Armando ; Medina-Perez, Miguel Angel ; Monroy, Raul ; Ramirez-Marquez, Jose Emmanuel ; Trejo, Luis A.</creatorcontrib><description>People often face risk-prone situations, that range from a mild event to a severe, life-threatening scenario. Risk situations stem from a number of different scenarios: a health condition, a hazard situation due to a natural disaster, a dangerous situation because one is being subject to a crime or physical violence, among others. The lack of a prompt response, calling for assistance, may severely worsen the consequences. In this paper, we propose a novel visualisation method to track and to identify, in real-time, when a person is under a risk-prone situation. Our visualisation model is capable of providing a decision maker a visual description of the physiological behaviour of an individual, or a group thereof; through it, the decision maker may infer whether further assistance is required, if a risky situation is in progress. Our visualisation is leveraged with a traffic light model of a one-class classifier. This combination allows us to train the decision maker into visualising correct and potential risky or abnormal behaviour.</description><identifier>ISSN: 1949-3045</identifier><identifier>EISSN: 1949-3045</identifier><identifier>DOI: 10.1109/TAFFC.2017.2741478</identifier><identifier>CODEN: ITACBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biomedical monitoring ; Crime ; Data visualization ; Decision making ; IoT ; machine learning ; Monitoring ; one-class classification ; Personal risk detection ; Real time ; Real-time systems ; Risk ; Situational awareness ; Traffic models ; Traffic signals ; Violence ; visualisation ; Visualization ; Wearable sensors</subject><ispartof>IEEE transactions on affective computing, 2018-07, Vol.9 (3), p.372-382</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-64f892040cc1770116d7d3956660954ae5979a39725be2fb46e5e0cffa7f333e3</citedby><cites>FETCH-LOGICAL-c339t-64f892040cc1770116d7d3956660954ae5979a39725be2fb46e5e0cffa7f333e3</cites><orcidid>0000-0002-0965-1446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8013066$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8013066$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lopez-Cuevas, Armando</creatorcontrib><creatorcontrib>Medina-Perez, Miguel Angel</creatorcontrib><creatorcontrib>Monroy, Raul</creatorcontrib><creatorcontrib>Ramirez-Marquez, Jose Emmanuel</creatorcontrib><creatorcontrib>Trejo, Luis A.</creatorcontrib><title>FiToViz: A Visualisation Approach for Real-Time Risk Situation Awareness</title><title>IEEE transactions on affective computing</title><addtitle>T-AFFC</addtitle><description>People often face risk-prone situations, that range from a mild event to a severe, life-threatening scenario. Risk situations stem from a number of different scenarios: a health condition, a hazard situation due to a natural disaster, a dangerous situation because one is being subject to a crime or physical violence, among others. The lack of a prompt response, calling for assistance, may severely worsen the consequences. In this paper, we propose a novel visualisation method to track and to identify, in real-time, when a person is under a risk-prone situation. Our visualisation model is capable of providing a decision maker a visual description of the physiological behaviour of an individual, or a group thereof; through it, the decision maker may infer whether further assistance is required, if a risky situation is in progress. Our visualisation is leveraged with a traffic light model of a one-class classifier. This combination allows us to train the decision maker into visualising correct and potential risky or abnormal behaviour.</description><subject>Biomedical monitoring</subject><subject>Crime</subject><subject>Data visualization</subject><subject>Decision making</subject><subject>IoT</subject><subject>machine learning</subject><subject>Monitoring</subject><subject>one-class classification</subject><subject>Personal risk detection</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Risk</subject><subject>Situational awareness</subject><subject>Traffic models</subject><subject>Traffic signals</subject><subject>Violence</subject><subject>visualisation</subject><subject>Visualization</subject><subject>Wearable sensors</subject><issn>1949-3045</issn><issn>1949-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LAzEQxYMoWGq_gF4CnrfmfzbeluJaoSDUtdeQbieY2nZrsovop3driziXN4f3Zh4_hK4pGVNKzF1VlOVkzAjVY6YFFTo_QwNqhMk4EfL8336JRimtST-cc8X0AE3LUDWL8H2PC7wIqXObkFwbmh0u9vvYuPoN-ybiObhNVoUt4HlI7_gltN3J9eki7CClK3Th3SbB6KRD9Fo-VJNpNnt-fJoUs6zm3LSZEj43jAhS11RrQqla6RU3UilFjBQOpNHGcaOZXALzS6FAAqm9d9r3nYEP0e3xbt_uo4PU2nXTxV3_0jJKNZV5zlTvYkdXHZuUIni7j2Hr4pelxB6g2V9o9gDNnqD1oZtjKADAXyAnlBOl-A-dF2Yw</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Lopez-Cuevas, Armando</creator><creator>Medina-Perez, Miguel Angel</creator><creator>Monroy, Raul</creator><creator>Ramirez-Marquez, Jose Emmanuel</creator><creator>Trejo, Luis A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0965-1446</orcidid></search><sort><creationdate>20180701</creationdate><title>FiToViz: A Visualisation Approach for Real-Time Risk Situation Awareness</title><author>Lopez-Cuevas, Armando ; Medina-Perez, Miguel Angel ; Monroy, Raul ; Ramirez-Marquez, Jose Emmanuel ; Trejo, Luis A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-64f892040cc1770116d7d3956660954ae5979a39725be2fb46e5e0cffa7f333e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biomedical monitoring</topic><topic>Crime</topic><topic>Data visualization</topic><topic>Decision making</topic><topic>IoT</topic><topic>machine learning</topic><topic>Monitoring</topic><topic>one-class classification</topic><topic>Personal risk detection</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Risk</topic><topic>Situational awareness</topic><topic>Traffic models</topic><topic>Traffic signals</topic><topic>Violence</topic><topic>visualisation</topic><topic>Visualization</topic><topic>Wearable sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez-Cuevas, Armando</creatorcontrib><creatorcontrib>Medina-Perez, Miguel Angel</creatorcontrib><creatorcontrib>Monroy, Raul</creatorcontrib><creatorcontrib>Ramirez-Marquez, Jose Emmanuel</creatorcontrib><creatorcontrib>Trejo, Luis A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on affective computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lopez-Cuevas, Armando</au><au>Medina-Perez, Miguel Angel</au><au>Monroy, Raul</au><au>Ramirez-Marquez, Jose Emmanuel</au><au>Trejo, Luis A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FiToViz: A Visualisation Approach for Real-Time Risk Situation Awareness</atitle><jtitle>IEEE transactions on affective computing</jtitle><stitle>T-AFFC</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>9</volume><issue>3</issue><spage>372</spage><epage>382</epage><pages>372-382</pages><issn>1949-3045</issn><eissn>1949-3045</eissn><coden>ITACBQ</coden><abstract>People often face risk-prone situations, that range from a mild event to a severe, life-threatening scenario. Risk situations stem from a number of different scenarios: a health condition, a hazard situation due to a natural disaster, a dangerous situation because one is being subject to a crime or physical violence, among others. The lack of a prompt response, calling for assistance, may severely worsen the consequences. In this paper, we propose a novel visualisation method to track and to identify, in real-time, when a person is under a risk-prone situation. Our visualisation model is capable of providing a decision maker a visual description of the physiological behaviour of an individual, or a group thereof; through it, the decision maker may infer whether further assistance is required, if a risky situation is in progress. Our visualisation is leveraged with a traffic light model of a one-class classifier. This combination allows us to train the decision maker into visualising correct and potential risky or abnormal behaviour.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TAFFC.2017.2741478</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0965-1446</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3045
ispartof IEEE transactions on affective computing, 2018-07, Vol.9 (3), p.372-382
issn 1949-3045
1949-3045
language eng
recordid cdi_crossref_primary_10_1109_TAFFC_2017_2741478
source IEEE Electronic Library (IEL)
subjects Biomedical monitoring
Crime
Data visualization
Decision making
IoT
machine learning
Monitoring
one-class classification
Personal risk detection
Real time
Real-time systems
Risk
Situational awareness
Traffic models
Traffic signals
Violence
visualisation
Visualization
Wearable sensors
title FiToViz: A Visualisation Approach for Real-Time Risk Situation Awareness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FiToViz:%20A%20Visualisation%20Approach%20for%20Real-Time%20Risk%20Situation%20Awareness&rft.jtitle=IEEE%20transactions%20on%20affective%20computing&rft.au=Lopez-Cuevas,%20Armando&rft.date=2018-07-01&rft.volume=9&rft.issue=3&rft.spage=372&rft.epage=382&rft.pages=372-382&rft.issn=1949-3045&rft.eissn=1949-3045&rft.coden=ITACBQ&rft_id=info:doi/10.1109/TAFFC.2017.2741478&rft_dat=%3Cproquest_RIE%3E2117158826%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117158826&rft_id=info:pmid/&rft_ieee_id=8013066&rfr_iscdi=true