Capturing Feature and Label Relations Simultaneously for Multiple Facial Action Unit Recognition
Although both feature dependencies and label dependencies are crucial for facial action unit (AU) recognition, little work addresses them simultaneously till now. In this paper, we propose a 4-layer Restricted Boltzmann Machine (RBM) to simultaneously capture feature level and label level dependenci...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on affective computing 2019-07, Vol.10 (3), p.348-359 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 359 |
---|---|
container_issue | 3 |
container_start_page | 348 |
container_title | IEEE transactions on affective computing |
container_volume | 10 |
creator | Wang, Shangfei Wu, Shan Peng, Guozhu Ji, Qiang |
description | Although both feature dependencies and label dependencies are crucial for facial action unit (AU) recognition, little work addresses them simultaneously till now. In this paper, we propose a 4-layer Restricted Boltzmann Machine (RBM) to simultaneously capture feature level and label level dependencies to recognize multiple AUs. The middle hidden layer of the 4-layer RBM model captures dependencies among image features for multiple AUs, while the top latent units capture the high-order semantic dependencies among AU labels. Furthermore, we extend the proposed 4-layer RBM for facial expression-augmented AU recognition, since AU relations are influenced by expressions. By introducing facial expression nodes in the middle visible layer, facial expressions, which are only required during training, facilitate the estimation of both feature dependencies and label dependencies among AUs. Efficient learning and inference algorithms for the extended model are also developed. Experimental results on three benchmark databases, i.e., the CK+ database, the DISFA database and the SEMAINE database, demonstrate that the proposed approaches can successfully capture complex AU relationships from features and labels jointly, and the expression labels available only during training are benefit for AU recognition during testing for both posed and spontaneous facial expressions. |
doi_str_mv | 10.1109/TAFFC.2017.2737540 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAFFC_2017_2737540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8006290</ieee_id><sourcerecordid>2285327944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-39149d798b619df2c8a80deca18803565c27d146ec2b83e741afa187bf9b738c3</originalsourceid><addsrcrecordid>eNpNkF9LwzAUxYMoOOa-gL4EfO7MvzbJ4yhWhYmg23NM03RkdE1N2od9ezMn4n25h3vP7144ANxitMQYyYfNqqrKJUGYLwmnPGfoAsywZDKjiOWX__Q1WMS4R6kopQXhM_BZ6mGcgut3sLI6KQt138C1rm0H322nR-f7CD_cYepG3Vs_xe4IWx_gaxq4obOw0sbpDq7MyQq3vRsTaPwuiTS4AVet7qJd_PY52FaPm_I5W789vZSrdWZogceMSsxkw6WoCyyblhihBWqs0VgIRPMiN4Q3mBXWkFpQyxnWbdrxupU1p8LQObg_3x2C_5psHNXeT6FPLxUhIqeES8aSi5xdJvgYg23VENxBh6PCSJ3CVD9hqlOY6jfMBN2dIWet_QMEQgWRiH4D1upwZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285327944</pqid></control><display><type>article</type><title>Capturing Feature and Label Relations Simultaneously for Multiple Facial Action Unit Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Shangfei ; Wu, Shan ; Peng, Guozhu ; Ji, Qiang</creator><creatorcontrib>Wang, Shangfei ; Wu, Shan ; Peng, Guozhu ; Ji, Qiang</creatorcontrib><description>Although both feature dependencies and label dependencies are crucial for facial action unit (AU) recognition, little work addresses them simultaneously till now. In this paper, we propose a 4-layer Restricted Boltzmann Machine (RBM) to simultaneously capture feature level and label level dependencies to recognize multiple AUs. The middle hidden layer of the 4-layer RBM model captures dependencies among image features for multiple AUs, while the top latent units capture the high-order semantic dependencies among AU labels. Furthermore, we extend the proposed 4-layer RBM for facial expression-augmented AU recognition, since AU relations are influenced by expressions. By introducing facial expression nodes in the middle visible layer, facial expressions, which are only required during training, facilitate the estimation of both feature dependencies and label dependencies among AUs. Efficient learning and inference algorithms for the extended model are also developed. Experimental results on three benchmark databases, i.e., the CK+ database, the DISFA database and the SEMAINE database, demonstrate that the proposed approaches can successfully capture complex AU relationships from features and labels jointly, and the expression labels available only during training are benefit for AU recognition during testing for both posed and spontaneous facial expressions.</description><identifier>ISSN: 1949-3045</identifier><identifier>EISSN: 1949-3045</identifier><identifier>DOI: 10.1109/TAFFC.2017.2737540</identifier><identifier>CODEN: ITACBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; AU recognition ; Boltzmann equation ; expression-augmented ; Face recognition ; Feature recognition ; Labels ; Learning (artificial intelligence) ; Machine learning ; RBM ; Training</subject><ispartof>IEEE transactions on affective computing, 2019-07, Vol.10 (3), p.348-359</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-39149d798b619df2c8a80deca18803565c27d146ec2b83e741afa187bf9b738c3</citedby><cites>FETCH-LOGICAL-c361t-39149d798b619df2c8a80deca18803565c27d146ec2b83e741afa187bf9b738c3</cites><orcidid>0000-0003-1164-9895 ; 0000-0002-4302-2889 ; 0000-0002-1001-8744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8006290$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8006290$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Shangfei</creatorcontrib><creatorcontrib>Wu, Shan</creatorcontrib><creatorcontrib>Peng, Guozhu</creatorcontrib><creatorcontrib>Ji, Qiang</creatorcontrib><title>Capturing Feature and Label Relations Simultaneously for Multiple Facial Action Unit Recognition</title><title>IEEE transactions on affective computing</title><addtitle>T-AFFC</addtitle><description>Although both feature dependencies and label dependencies are crucial for facial action unit (AU) recognition, little work addresses them simultaneously till now. In this paper, we propose a 4-layer Restricted Boltzmann Machine (RBM) to simultaneously capture feature level and label level dependencies to recognize multiple AUs. The middle hidden layer of the 4-layer RBM model captures dependencies among image features for multiple AUs, while the top latent units capture the high-order semantic dependencies among AU labels. Furthermore, we extend the proposed 4-layer RBM for facial expression-augmented AU recognition, since AU relations are influenced by expressions. By introducing facial expression nodes in the middle visible layer, facial expressions, which are only required during training, facilitate the estimation of both feature dependencies and label dependencies among AUs. Efficient learning and inference algorithms for the extended model are also developed. Experimental results on three benchmark databases, i.e., the CK+ database, the DISFA database and the SEMAINE database, demonstrate that the proposed approaches can successfully capture complex AU relationships from features and labels jointly, and the expression labels available only during training are benefit for AU recognition during testing for both posed and spontaneous facial expressions.</description><subject>Algorithms</subject><subject>AU recognition</subject><subject>Boltzmann equation</subject><subject>expression-augmented</subject><subject>Face recognition</subject><subject>Feature recognition</subject><subject>Labels</subject><subject>Learning (artificial intelligence)</subject><subject>Machine learning</subject><subject>RBM</subject><subject>Training</subject><issn>1949-3045</issn><issn>1949-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF9LwzAUxYMoOOa-gL4EfO7MvzbJ4yhWhYmg23NM03RkdE1N2od9ezMn4n25h3vP7144ANxitMQYyYfNqqrKJUGYLwmnPGfoAsywZDKjiOWX__Q1WMS4R6kopQXhM_BZ6mGcgut3sLI6KQt138C1rm0H322nR-f7CD_cYepG3Vs_xe4IWx_gaxq4obOw0sbpDq7MyQq3vRsTaPwuiTS4AVet7qJd_PY52FaPm_I5W789vZSrdWZogceMSsxkw6WoCyyblhihBWqs0VgIRPMiN4Q3mBXWkFpQyxnWbdrxupU1p8LQObg_3x2C_5psHNXeT6FPLxUhIqeES8aSi5xdJvgYg23VENxBh6PCSJ3CVD9hqlOY6jfMBN2dIWet_QMEQgWRiH4D1upwZA</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Wang, Shangfei</creator><creator>Wu, Shan</creator><creator>Peng, Guozhu</creator><creator>Ji, Qiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1164-9895</orcidid><orcidid>https://orcid.org/0000-0002-4302-2889</orcidid><orcidid>https://orcid.org/0000-0002-1001-8744</orcidid></search><sort><creationdate>20190701</creationdate><title>Capturing Feature and Label Relations Simultaneously for Multiple Facial Action Unit Recognition</title><author>Wang, Shangfei ; Wu, Shan ; Peng, Guozhu ; Ji, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-39149d798b619df2c8a80deca18803565c27d146ec2b83e741afa187bf9b738c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>AU recognition</topic><topic>Boltzmann equation</topic><topic>expression-augmented</topic><topic>Face recognition</topic><topic>Feature recognition</topic><topic>Labels</topic><topic>Learning (artificial intelligence)</topic><topic>Machine learning</topic><topic>RBM</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shangfei</creatorcontrib><creatorcontrib>Wu, Shan</creatorcontrib><creatorcontrib>Peng, Guozhu</creatorcontrib><creatorcontrib>Ji, Qiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on affective computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Shangfei</au><au>Wu, Shan</au><au>Peng, Guozhu</au><au>Ji, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capturing Feature and Label Relations Simultaneously for Multiple Facial Action Unit Recognition</atitle><jtitle>IEEE transactions on affective computing</jtitle><stitle>T-AFFC</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>10</volume><issue>3</issue><spage>348</spage><epage>359</epage><pages>348-359</pages><issn>1949-3045</issn><eissn>1949-3045</eissn><coden>ITACBQ</coden><abstract>Although both feature dependencies and label dependencies are crucial for facial action unit (AU) recognition, little work addresses them simultaneously till now. In this paper, we propose a 4-layer Restricted Boltzmann Machine (RBM) to simultaneously capture feature level and label level dependencies to recognize multiple AUs. The middle hidden layer of the 4-layer RBM model captures dependencies among image features for multiple AUs, while the top latent units capture the high-order semantic dependencies among AU labels. Furthermore, we extend the proposed 4-layer RBM for facial expression-augmented AU recognition, since AU relations are influenced by expressions. By introducing facial expression nodes in the middle visible layer, facial expressions, which are only required during training, facilitate the estimation of both feature dependencies and label dependencies among AUs. Efficient learning and inference algorithms for the extended model are also developed. Experimental results on three benchmark databases, i.e., the CK+ database, the DISFA database and the SEMAINE database, demonstrate that the proposed approaches can successfully capture complex AU relationships from features and labels jointly, and the expression labels available only during training are benefit for AU recognition during testing for both posed and spontaneous facial expressions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TAFFC.2017.2737540</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1164-9895</orcidid><orcidid>https://orcid.org/0000-0002-4302-2889</orcidid><orcidid>https://orcid.org/0000-0002-1001-8744</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1949-3045 |
ispartof | IEEE transactions on affective computing, 2019-07, Vol.10 (3), p.348-359 |
issn | 1949-3045 1949-3045 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAFFC_2017_2737540 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms AU recognition Boltzmann equation expression-augmented Face recognition Feature recognition Labels Learning (artificial intelligence) Machine learning RBM Training |
title | Capturing Feature and Label Relations Simultaneously for Multiple Facial Action Unit Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A07%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capturing%20Feature%20and%20Label%20Relations%20Simultaneously%20for%20Multiple%20Facial%20Action%20Unit%20Recognition&rft.jtitle=IEEE%20transactions%20on%20affective%20computing&rft.au=Wang,%20Shangfei&rft.date=2019-07-01&rft.volume=10&rft.issue=3&rft.spage=348&rft.epage=359&rft.pages=348-359&rft.issn=1949-3045&rft.eissn=1949-3045&rft.coden=ITACBQ&rft_id=info:doi/10.1109/TAFFC.2017.2737540&rft_dat=%3Cproquest_RIE%3E2285327944%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2285327944&rft_id=info:pmid/&rft_ieee_id=8006290&rfr_iscdi=true |