RCS Reduction for Multiple-Sparsity-Rate Arrays with a Feature Multitask Network
Deep learning networks have been widely used in sparse array optimization in recent years. However, these networks are designed for a single sparsity rate, which makes them unsuitable for reducing the radar cross section (RCS) of sparse arrays with multiple sparsity rates. In this paper, multitask l...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2024-11, p.1-15 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | |
creator | Ji, Lixia Ren, Zhigang Chen, Yiqiao Zeng, Hao |
description | Deep learning networks have been widely used in sparse array optimization in recent years. However, these networks are designed for a single sparsity rate, which makes them unsuitable for reducing the radar cross section (RCS) of sparse arrays with multiple sparsity rates. In this paper, multitask learning is first applied to address this limitation. Subsequently, we carefully design a feature multitask network (FMTN). The proposed FMTN offers two main improvements over current multitask networks. First, we present a deep sharing (DS) strategy that increases the generalizability of the network and compresses the network. Second, fully connected layers are replaced with multiple convolutional layers to reduce the complexity and increase the network's nonlinearity. Finally, the simulation results demonstrate that the proposed FMTN achieves higher classification accuracy, greater stealth capabilities, and lower complexity than existing multitask networks do |
doi_str_mv | 10.1109/TAES.2024.3490535 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAES_2024_3490535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10741341</ieee_id><sourcerecordid>10_1109_TAES_2024_3490535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c631-27c993551b1b20b6b15bfbbb795720f272224892bf3f91199a6ed51dcf1b8893</originalsourceid><addsrcrecordid>eNpNkN1KwzAcxYMoOKcPIHiRF8jMPx9tcznG5oT5wbr7kLQJ1lU7kpSxt7ejuxAOHA6ccy5-CD0CnQFQ9bybL8sZo0zMuFBUcnmFJiBlTlRG-TWaUAoFUUzCLbqL8XuIohB8gj63ixJvXd1Xqel-se8Cfuvb1BxaR8qDCbFJJ7I1yeF5COYU8bFJX9jglTOpD24sJxP3-N2lYxf29-jGmza6h4tPUbla7hZrsvl4eV3MN6TKOBCWV0pxKcGCZdRmFqT11tpcyZxRz3LGmCgUs557BaCUyVwtoa482KJQfIpgfK1CF2NwXh9C82PCSQPVZyD6DESfgegLkGHzNG4a59y_fi6AD_oDDTJcVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>RCS Reduction for Multiple-Sparsity-Rate Arrays with a Feature Multitask Network</title><source>IEEE Electronic Library (IEL)</source><creator>Ji, Lixia ; Ren, Zhigang ; Chen, Yiqiao ; Zeng, Hao</creator><creatorcontrib>Ji, Lixia ; Ren, Zhigang ; Chen, Yiqiao ; Zeng, Hao</creatorcontrib><description>Deep learning networks have been widely used in sparse array optimization in recent years. However, these networks are designed for a single sparsity rate, which makes them unsuitable for reducing the radar cross section (RCS) of sparse arrays with multiple sparsity rates. In this paper, multitask learning is first applied to address this limitation. Subsequently, we carefully design a feature multitask network (FMTN). The proposed FMTN offers two main improvements over current multitask networks. First, we present a deep sharing (DS) strategy that increases the generalizability of the network and compresses the network. Second, fully connected layers are replaced with multiple convolutional layers to reduce the complexity and increase the network's nonlinearity. Finally, the simulation results demonstrate that the proposed FMTN achieves higher classification accuracy, greater stealth capabilities, and lower complexity than existing multitask networks do</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2024.3490535</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerospace and electronic systems ; Complexity theory ; Convolution ; Direction-of-arrival estimation ; Feature extraction ; Optimization ; Phased arrays ; Radar antennas ; Sparse matrices ; Switches</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2024-11, p.1-15</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10741341$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10741341$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ji, Lixia</creatorcontrib><creatorcontrib>Ren, Zhigang</creatorcontrib><creatorcontrib>Chen, Yiqiao</creatorcontrib><creatorcontrib>Zeng, Hao</creatorcontrib><title>RCS Reduction for Multiple-Sparsity-Rate Arrays with a Feature Multitask Network</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>Deep learning networks have been widely used in sparse array optimization in recent years. However, these networks are designed for a single sparsity rate, which makes them unsuitable for reducing the radar cross section (RCS) of sparse arrays with multiple sparsity rates. In this paper, multitask learning is first applied to address this limitation. Subsequently, we carefully design a feature multitask network (FMTN). The proposed FMTN offers two main improvements over current multitask networks. First, we present a deep sharing (DS) strategy that increases the generalizability of the network and compresses the network. Second, fully connected layers are replaced with multiple convolutional layers to reduce the complexity and increase the network's nonlinearity. Finally, the simulation results demonstrate that the proposed FMTN achieves higher classification accuracy, greater stealth capabilities, and lower complexity than existing multitask networks do</description><subject>Aerospace and electronic systems</subject><subject>Complexity theory</subject><subject>Convolution</subject><subject>Direction-of-arrival estimation</subject><subject>Feature extraction</subject><subject>Optimization</subject><subject>Phased arrays</subject><subject>Radar antennas</subject><subject>Sparse matrices</subject><subject>Switches</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN1KwzAcxYMoOKcPIHiRF8jMPx9tcznG5oT5wbr7kLQJ1lU7kpSxt7ejuxAOHA6ccy5-CD0CnQFQ9bybL8sZo0zMuFBUcnmFJiBlTlRG-TWaUAoFUUzCLbqL8XuIohB8gj63ixJvXd1Xqel-se8Cfuvb1BxaR8qDCbFJJ7I1yeF5COYU8bFJX9jglTOpD24sJxP3-N2lYxf29-jGmza6h4tPUbla7hZrsvl4eV3MN6TKOBCWV0pxKcGCZdRmFqT11tpcyZxRz3LGmCgUs557BaCUyVwtoa482KJQfIpgfK1CF2NwXh9C82PCSQPVZyD6DESfgegLkGHzNG4a59y_fi6AD_oDDTJcVA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Ji, Lixia</creator><creator>Ren, Zhigang</creator><creator>Chen, Yiqiao</creator><creator>Zeng, Hao</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241101</creationdate><title>RCS Reduction for Multiple-Sparsity-Rate Arrays with a Feature Multitask Network</title><author>Ji, Lixia ; Ren, Zhigang ; Chen, Yiqiao ; Zeng, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c631-27c993551b1b20b6b15bfbbb795720f272224892bf3f91199a6ed51dcf1b8893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerospace and electronic systems</topic><topic>Complexity theory</topic><topic>Convolution</topic><topic>Direction-of-arrival estimation</topic><topic>Feature extraction</topic><topic>Optimization</topic><topic>Phased arrays</topic><topic>Radar antennas</topic><topic>Sparse matrices</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Lixia</creatorcontrib><creatorcontrib>Ren, Zhigang</creatorcontrib><creatorcontrib>Chen, Yiqiao</creatorcontrib><creatorcontrib>Zeng, Hao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ji, Lixia</au><au>Ren, Zhigang</au><au>Chen, Yiqiao</au><au>Zeng, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RCS Reduction for Multiple-Sparsity-Rate Arrays with a Feature Multitask Network</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2024-11-01</date><risdate>2024</risdate><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>Deep learning networks have been widely used in sparse array optimization in recent years. However, these networks are designed for a single sparsity rate, which makes them unsuitable for reducing the radar cross section (RCS) of sparse arrays with multiple sparsity rates. In this paper, multitask learning is first applied to address this limitation. Subsequently, we carefully design a feature multitask network (FMTN). The proposed FMTN offers two main improvements over current multitask networks. First, we present a deep sharing (DS) strategy that increases the generalizability of the network and compresses the network. Second, fully connected layers are replaced with multiple convolutional layers to reduce the complexity and increase the network's nonlinearity. Finally, the simulation results demonstrate that the proposed FMTN achieves higher classification accuracy, greater stealth capabilities, and lower complexity than existing multitask networks do</abstract><pub>IEEE</pub><doi>10.1109/TAES.2024.3490535</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2024-11, p.1-15 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAES_2024_3490535 |
source | IEEE Electronic Library (IEL) |
subjects | Aerospace and electronic systems Complexity theory Convolution Direction-of-arrival estimation Feature extraction Optimization Phased arrays Radar antennas Sparse matrices Switches |
title | RCS Reduction for Multiple-Sparsity-Rate Arrays with a Feature Multitask Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A30%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RCS%20Reduction%20for%20Multiple-Sparsity-Rate%20Arrays%20with%20a%20Feature%20Multitask%20Network&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Ji,%20Lixia&rft.date=2024-11-01&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2024.3490535&rft_dat=%3Ccrossref_RIE%3E10_1109_TAES_2024_3490535%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10741341&rfr_iscdi=true |