RCS Reduction for Multiple-Sparsity-Rate Arrays with a Feature Multitask Network

Deep learning networks have been widely used in sparse array optimization in recent years. However, these networks are designed for a single sparsity rate, which makes them unsuitable for reducing the radar cross section (RCS) of sparse arrays with multiple sparsity rates. In this paper, multitask l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2024-11, p.1-15
Hauptverfasser: Ji, Lixia, Ren, Zhigang, Chen, Yiqiao, Zeng, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue
container_start_page 1
container_title IEEE transactions on aerospace and electronic systems
container_volume
creator Ji, Lixia
Ren, Zhigang
Chen, Yiqiao
Zeng, Hao
description Deep learning networks have been widely used in sparse array optimization in recent years. However, these networks are designed for a single sparsity rate, which makes them unsuitable for reducing the radar cross section (RCS) of sparse arrays with multiple sparsity rates. In this paper, multitask learning is first applied to address this limitation. Subsequently, we carefully design a feature multitask network (FMTN). The proposed FMTN offers two main improvements over current multitask networks. First, we present a deep sharing (DS) strategy that increases the generalizability of the network and compresses the network. Second, fully connected layers are replaced with multiple convolutional layers to reduce the complexity and increase the network's nonlinearity. Finally, the simulation results demonstrate that the proposed FMTN achieves higher classification accuracy, greater stealth capabilities, and lower complexity than existing multitask networks do
doi_str_mv 10.1109/TAES.2024.3490535
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAES_2024_3490535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10741341</ieee_id><sourcerecordid>10_1109_TAES_2024_3490535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c631-27c993551b1b20b6b15bfbbb795720f272224892bf3f91199a6ed51dcf1b8893</originalsourceid><addsrcrecordid>eNpNkN1KwzAcxYMoOKcPIHiRF8jMPx9tcznG5oT5wbr7kLQJ1lU7kpSxt7ejuxAOHA6ccy5-CD0CnQFQ9bybL8sZo0zMuFBUcnmFJiBlTlRG-TWaUAoFUUzCLbqL8XuIohB8gj63ixJvXd1Xqel-se8Cfuvb1BxaR8qDCbFJJ7I1yeF5COYU8bFJX9jglTOpD24sJxP3-N2lYxf29-jGmza6h4tPUbla7hZrsvl4eV3MN6TKOBCWV0pxKcGCZdRmFqT11tpcyZxRz3LGmCgUs557BaCUyVwtoa482KJQfIpgfK1CF2NwXh9C82PCSQPVZyD6DESfgegLkGHzNG4a59y_fi6AD_oDDTJcVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>RCS Reduction for Multiple-Sparsity-Rate Arrays with a Feature Multitask Network</title><source>IEEE Electronic Library (IEL)</source><creator>Ji, Lixia ; Ren, Zhigang ; Chen, Yiqiao ; Zeng, Hao</creator><creatorcontrib>Ji, Lixia ; Ren, Zhigang ; Chen, Yiqiao ; Zeng, Hao</creatorcontrib><description>Deep learning networks have been widely used in sparse array optimization in recent years. However, these networks are designed for a single sparsity rate, which makes them unsuitable for reducing the radar cross section (RCS) of sparse arrays with multiple sparsity rates. In this paper, multitask learning is first applied to address this limitation. Subsequently, we carefully design a feature multitask network (FMTN). The proposed FMTN offers two main improvements over current multitask networks. First, we present a deep sharing (DS) strategy that increases the generalizability of the network and compresses the network. Second, fully connected layers are replaced with multiple convolutional layers to reduce the complexity and increase the network's nonlinearity. Finally, the simulation results demonstrate that the proposed FMTN achieves higher classification accuracy, greater stealth capabilities, and lower complexity than existing multitask networks do</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2024.3490535</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerospace and electronic systems ; Complexity theory ; Convolution ; Direction-of-arrival estimation ; Feature extraction ; Optimization ; Phased arrays ; Radar antennas ; Sparse matrices ; Switches</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2024-11, p.1-15</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10741341$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10741341$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ji, Lixia</creatorcontrib><creatorcontrib>Ren, Zhigang</creatorcontrib><creatorcontrib>Chen, Yiqiao</creatorcontrib><creatorcontrib>Zeng, Hao</creatorcontrib><title>RCS Reduction for Multiple-Sparsity-Rate Arrays with a Feature Multitask Network</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>Deep learning networks have been widely used in sparse array optimization in recent years. However, these networks are designed for a single sparsity rate, which makes them unsuitable for reducing the radar cross section (RCS) of sparse arrays with multiple sparsity rates. In this paper, multitask learning is first applied to address this limitation. Subsequently, we carefully design a feature multitask network (FMTN). The proposed FMTN offers two main improvements over current multitask networks. First, we present a deep sharing (DS) strategy that increases the generalizability of the network and compresses the network. Second, fully connected layers are replaced with multiple convolutional layers to reduce the complexity and increase the network's nonlinearity. Finally, the simulation results demonstrate that the proposed FMTN achieves higher classification accuracy, greater stealth capabilities, and lower complexity than existing multitask networks do</description><subject>Aerospace and electronic systems</subject><subject>Complexity theory</subject><subject>Convolution</subject><subject>Direction-of-arrival estimation</subject><subject>Feature extraction</subject><subject>Optimization</subject><subject>Phased arrays</subject><subject>Radar antennas</subject><subject>Sparse matrices</subject><subject>Switches</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN1KwzAcxYMoOKcPIHiRF8jMPx9tcznG5oT5wbr7kLQJ1lU7kpSxt7ejuxAOHA6ccy5-CD0CnQFQ9bybL8sZo0zMuFBUcnmFJiBlTlRG-TWaUAoFUUzCLbqL8XuIohB8gj63ixJvXd1Xqel-se8Cfuvb1BxaR8qDCbFJJ7I1yeF5COYU8bFJX9jglTOpD24sJxP3-N2lYxf29-jGmza6h4tPUbla7hZrsvl4eV3MN6TKOBCWV0pxKcGCZdRmFqT11tpcyZxRz3LGmCgUs557BaCUyVwtoa482KJQfIpgfK1CF2NwXh9C82PCSQPVZyD6DESfgegLkGHzNG4a59y_fi6AD_oDDTJcVA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Ji, Lixia</creator><creator>Ren, Zhigang</creator><creator>Chen, Yiqiao</creator><creator>Zeng, Hao</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241101</creationdate><title>RCS Reduction for Multiple-Sparsity-Rate Arrays with a Feature Multitask Network</title><author>Ji, Lixia ; Ren, Zhigang ; Chen, Yiqiao ; Zeng, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c631-27c993551b1b20b6b15bfbbb795720f272224892bf3f91199a6ed51dcf1b8893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerospace and electronic systems</topic><topic>Complexity theory</topic><topic>Convolution</topic><topic>Direction-of-arrival estimation</topic><topic>Feature extraction</topic><topic>Optimization</topic><topic>Phased arrays</topic><topic>Radar antennas</topic><topic>Sparse matrices</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Lixia</creatorcontrib><creatorcontrib>Ren, Zhigang</creatorcontrib><creatorcontrib>Chen, Yiqiao</creatorcontrib><creatorcontrib>Zeng, Hao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ji, Lixia</au><au>Ren, Zhigang</au><au>Chen, Yiqiao</au><au>Zeng, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RCS Reduction for Multiple-Sparsity-Rate Arrays with a Feature Multitask Network</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2024-11-01</date><risdate>2024</risdate><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>Deep learning networks have been widely used in sparse array optimization in recent years. However, these networks are designed for a single sparsity rate, which makes them unsuitable for reducing the radar cross section (RCS) of sparse arrays with multiple sparsity rates. In this paper, multitask learning is first applied to address this limitation. Subsequently, we carefully design a feature multitask network (FMTN). The proposed FMTN offers two main improvements over current multitask networks. First, we present a deep sharing (DS) strategy that increases the generalizability of the network and compresses the network. Second, fully connected layers are replaced with multiple convolutional layers to reduce the complexity and increase the network's nonlinearity. Finally, the simulation results demonstrate that the proposed FMTN achieves higher classification accuracy, greater stealth capabilities, and lower complexity than existing multitask networks do</abstract><pub>IEEE</pub><doi>10.1109/TAES.2024.3490535</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2024-11, p.1-15
issn 0018-9251
1557-9603
language eng
recordid cdi_crossref_primary_10_1109_TAES_2024_3490535
source IEEE Electronic Library (IEL)
subjects Aerospace and electronic systems
Complexity theory
Convolution
Direction-of-arrival estimation
Feature extraction
Optimization
Phased arrays
Radar antennas
Sparse matrices
Switches
title RCS Reduction for Multiple-Sparsity-Rate Arrays with a Feature Multitask Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A30%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RCS%20Reduction%20for%20Multiple-Sparsity-Rate%20Arrays%20with%20a%20Feature%20Multitask%20Network&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Ji,%20Lixia&rft.date=2024-11-01&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2024.3490535&rft_dat=%3Ccrossref_RIE%3E10_1109_TAES_2024_3490535%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10741341&rfr_iscdi=true