Attitude Trajectory Planning for Spacecraft With Time-Varying Mass Using Sequential Conic Optimization
This article presents an attitude trajectory planning algorithm for spacecraft with time-varying mass and nonconvex state constraints. As a stepping stone, the problem of constrained attitude trajectory planning is posed as a finite-horizon optimal control problem (OCP). Then, the relaxation/convexi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2024-12, Vol.60 (6), p.9045-9059 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9059 |
---|---|
container_issue | 6 |
container_start_page | 9045 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 60 |
creator | Liu, Yueyang Hu, Qinglei Yang, Haoyang |
description | This article presents an attitude trajectory planning algorithm for spacecraft with time-varying mass and nonconvex state constraints. As a stepping stone, the problem of constrained attitude trajectory planning is posed as a finite-horizon optimal control problem (OCP). Then, the relaxation/convexification for control constraints is introduced that is proven to be lossless; i.e., the relaxed OCP is equivalent to the original one. By discretization and successive linearization, the relaxed OCP is then transformed as a sequence of second-order cone programming (SOCP) subproblems. Accordingly, the nonconvex motion constraints are converted into conic constraints. In particular, the so-called integration-correction technique is utilized to cancel the error resulting from the successive linearization, by which the recursive feasibility of the sequential SOCP is guaranteed. Moreover, the convergence to local optimality of the proposed algorithm is proved. Benefiting from the properties of the artificial potential function-based method, an initial solution can be rapidly generated to start the algorithm. Finally, the effectiveness of the trajectory planning algorithm is demonstrated by numerical examples. |
doi_str_mv | 10.1109/TAES.2024.3439266 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAES_2024_3439266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10623703</ieee_id><sourcerecordid>10_1109_TAES_2024_3439266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-5fa53cfe5a95fc9a87502630e8edee0b789eeabceaa9dcaf4aa3649836fe4f1a3</originalsourceid><addsrcrecordid>eNpNkM1KAzEUhYMoWKsPILjIC0xNJj8zWZZSf6BSoVNdDrfpjaa0MzVJF_XpnaFduDr3wDmXw0fIPWcjzpl5rMbTxShnuRwJKUyu9QUZcKWKzGgmLsmAMV5mJlf8mtzEuOmsLKUYEDdOyafDGmkVYIM2teFI37fQNL75oq4NdLEHizaAS_TTp29a-R1mHxCOfeANYqTL2J8L_Dlgkzxs6aRtvKXzffI7_wvJt80tuXKwjXh31iFZPk2ryUs2mz-_TsazzHZ7UqYcKGEdKjDKWQNloViuBcMS14hsVZQGEVYWAczagpMAQktTCu1QOg5iSPjprw1tjAFdvQ9-142tOat7UHUPqu5B1WdQXefh1PGI-C-vc1EwIf4AZpZn_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Attitude Trajectory Planning for Spacecraft With Time-Varying Mass Using Sequential Conic Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Yueyang ; Hu, Qinglei ; Yang, Haoyang</creator><creatorcontrib>Liu, Yueyang ; Hu, Qinglei ; Yang, Haoyang</creatorcontrib><description>This article presents an attitude trajectory planning algorithm for spacecraft with time-varying mass and nonconvex state constraints. As a stepping stone, the problem of constrained attitude trajectory planning is posed as a finite-horizon optimal control problem (OCP). Then, the relaxation/convexification for control constraints is introduced that is proven to be lossless; i.e., the relaxed OCP is equivalent to the original one. By discretization and successive linearization, the relaxed OCP is then transformed as a sequence of second-order cone programming (SOCP) subproblems. Accordingly, the nonconvex motion constraints are converted into conic constraints. In particular, the so-called integration-correction technique is utilized to cancel the error resulting from the successive linearization, by which the recursive feasibility of the sequential SOCP is guaranteed. Moreover, the convergence to local optimality of the proposed algorithm is proved. Benefiting from the properties of the artificial potential function-based method, an initial solution can be rapidly generated to start the algorithm. Finally, the effectiveness of the trajectory planning algorithm is demonstrated by numerical examples.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2024.3439266</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerospace and electronic systems ; Attitude control ; conic optimization ; nonrigid spacecraft ; Optimization ; pointing constraints ; Propulsion ; Quaternions ; Space vehicles ; Trajectory planning</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2024-12, Vol.60 (6), p.9045-9059</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-5fa53cfe5a95fc9a87502630e8edee0b789eeabceaa9dcaf4aa3649836fe4f1a3</cites><orcidid>0000-0002-1646-0445 ; 0000-0003-0156-8960 ; 0000-0002-5563-310X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10623703$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10623703$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Yueyang</creatorcontrib><creatorcontrib>Hu, Qinglei</creatorcontrib><creatorcontrib>Yang, Haoyang</creatorcontrib><title>Attitude Trajectory Planning for Spacecraft With Time-Varying Mass Using Sequential Conic Optimization</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>This article presents an attitude trajectory planning algorithm for spacecraft with time-varying mass and nonconvex state constraints. As a stepping stone, the problem of constrained attitude trajectory planning is posed as a finite-horizon optimal control problem (OCP). Then, the relaxation/convexification for control constraints is introduced that is proven to be lossless; i.e., the relaxed OCP is equivalent to the original one. By discretization and successive linearization, the relaxed OCP is then transformed as a sequence of second-order cone programming (SOCP) subproblems. Accordingly, the nonconvex motion constraints are converted into conic constraints. In particular, the so-called integration-correction technique is utilized to cancel the error resulting from the successive linearization, by which the recursive feasibility of the sequential SOCP is guaranteed. Moreover, the convergence to local optimality of the proposed algorithm is proved. Benefiting from the properties of the artificial potential function-based method, an initial solution can be rapidly generated to start the algorithm. Finally, the effectiveness of the trajectory planning algorithm is demonstrated by numerical examples.</description><subject>Aerospace and electronic systems</subject><subject>Attitude control</subject><subject>conic optimization</subject><subject>nonrigid spacecraft</subject><subject>Optimization</subject><subject>pointing constraints</subject><subject>Propulsion</subject><subject>Quaternions</subject><subject>Space vehicles</subject><subject>Trajectory planning</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1KAzEUhYMoWKsPILjIC0xNJj8zWZZSf6BSoVNdDrfpjaa0MzVJF_XpnaFduDr3wDmXw0fIPWcjzpl5rMbTxShnuRwJKUyu9QUZcKWKzGgmLsmAMV5mJlf8mtzEuOmsLKUYEDdOyafDGmkVYIM2teFI37fQNL75oq4NdLEHizaAS_TTp29a-R1mHxCOfeANYqTL2J8L_Dlgkzxs6aRtvKXzffI7_wvJt80tuXKwjXh31iFZPk2ryUs2mz-_TsazzHZ7UqYcKGEdKjDKWQNloViuBcMS14hsVZQGEVYWAczagpMAQktTCu1QOg5iSPjprw1tjAFdvQ9-142tOat7UHUPqu5B1WdQXefh1PGI-C-vc1EwIf4AZpZn_Q</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Liu, Yueyang</creator><creator>Hu, Qinglei</creator><creator>Yang, Haoyang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1646-0445</orcidid><orcidid>https://orcid.org/0000-0003-0156-8960</orcidid><orcidid>https://orcid.org/0000-0002-5563-310X</orcidid></search><sort><creationdate>202412</creationdate><title>Attitude Trajectory Planning for Spacecraft With Time-Varying Mass Using Sequential Conic Optimization</title><author>Liu, Yueyang ; Hu, Qinglei ; Yang, Haoyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-5fa53cfe5a95fc9a87502630e8edee0b789eeabceaa9dcaf4aa3649836fe4f1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerospace and electronic systems</topic><topic>Attitude control</topic><topic>conic optimization</topic><topic>nonrigid spacecraft</topic><topic>Optimization</topic><topic>pointing constraints</topic><topic>Propulsion</topic><topic>Quaternions</topic><topic>Space vehicles</topic><topic>Trajectory planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yueyang</creatorcontrib><creatorcontrib>Hu, Qinglei</creatorcontrib><creatorcontrib>Yang, Haoyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Yueyang</au><au>Hu, Qinglei</au><au>Yang, Haoyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attitude Trajectory Planning for Spacecraft With Time-Varying Mass Using Sequential Conic Optimization</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2024-12</date><risdate>2024</risdate><volume>60</volume><issue>6</issue><spage>9045</spage><epage>9059</epage><pages>9045-9059</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>This article presents an attitude trajectory planning algorithm for spacecraft with time-varying mass and nonconvex state constraints. As a stepping stone, the problem of constrained attitude trajectory planning is posed as a finite-horizon optimal control problem (OCP). Then, the relaxation/convexification for control constraints is introduced that is proven to be lossless; i.e., the relaxed OCP is equivalent to the original one. By discretization and successive linearization, the relaxed OCP is then transformed as a sequence of second-order cone programming (SOCP) subproblems. Accordingly, the nonconvex motion constraints are converted into conic constraints. In particular, the so-called integration-correction technique is utilized to cancel the error resulting from the successive linearization, by which the recursive feasibility of the sequential SOCP is guaranteed. Moreover, the convergence to local optimality of the proposed algorithm is proved. Benefiting from the properties of the artificial potential function-based method, an initial solution can be rapidly generated to start the algorithm. Finally, the effectiveness of the trajectory planning algorithm is demonstrated by numerical examples.</abstract><pub>IEEE</pub><doi>10.1109/TAES.2024.3439266</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1646-0445</orcidid><orcidid>https://orcid.org/0000-0003-0156-8960</orcidid><orcidid>https://orcid.org/0000-0002-5563-310X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2024-12, Vol.60 (6), p.9045-9059 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAES_2024_3439266 |
source | IEEE Electronic Library (IEL) |
subjects | Aerospace and electronic systems Attitude control conic optimization nonrigid spacecraft Optimization pointing constraints Propulsion Quaternions Space vehicles Trajectory planning |
title | Attitude Trajectory Planning for Spacecraft With Time-Varying Mass Using Sequential Conic Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attitude%20Trajectory%20Planning%20for%20Spacecraft%20With%20Time-Varying%20Mass%20Using%20Sequential%20Conic%20Optimization&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Liu,%20Yueyang&rft.date=2024-12&rft.volume=60&rft.issue=6&rft.spage=9045&rft.epage=9059&rft.pages=9045-9059&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2024.3439266&rft_dat=%3Ccrossref_RIE%3E10_1109_TAES_2024_3439266%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10623703&rfr_iscdi=true |