Attitude Trajectory Planning for Spacecraft With Time-Varying Mass Using Sequential Conic Optimization

This article presents an attitude trajectory planning algorithm for spacecraft with time-varying mass and nonconvex state constraints. As a stepping stone, the problem of constrained attitude trajectory planning is posed as a finite-horizon optimal control problem (OCP). Then, the relaxation/convexi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2024-12, Vol.60 (6), p.9045-9059
Hauptverfasser: Liu, Yueyang, Hu, Qinglei, Yang, Haoyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9059
container_issue 6
container_start_page 9045
container_title IEEE transactions on aerospace and electronic systems
container_volume 60
creator Liu, Yueyang
Hu, Qinglei
Yang, Haoyang
description This article presents an attitude trajectory planning algorithm for spacecraft with time-varying mass and nonconvex state constraints. As a stepping stone, the problem of constrained attitude trajectory planning is posed as a finite-horizon optimal control problem (OCP). Then, the relaxation/convexification for control constraints is introduced that is proven to be lossless; i.e., the relaxed OCP is equivalent to the original one. By discretization and successive linearization, the relaxed OCP is then transformed as a sequence of second-order cone programming (SOCP) subproblems. Accordingly, the nonconvex motion constraints are converted into conic constraints. In particular, the so-called integration-correction technique is utilized to cancel the error resulting from the successive linearization, by which the recursive feasibility of the sequential SOCP is guaranteed. Moreover, the convergence to local optimality of the proposed algorithm is proved. Benefiting from the properties of the artificial potential function-based method, an initial solution can be rapidly generated to start the algorithm. Finally, the effectiveness of the trajectory planning algorithm is demonstrated by numerical examples.
doi_str_mv 10.1109/TAES.2024.3439266
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAES_2024_3439266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10623703</ieee_id><sourcerecordid>10_1109_TAES_2024_3439266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-5fa53cfe5a95fc9a87502630e8edee0b789eeabceaa9dcaf4aa3649836fe4f1a3</originalsourceid><addsrcrecordid>eNpNkM1KAzEUhYMoWKsPILjIC0xNJj8zWZZSf6BSoVNdDrfpjaa0MzVJF_XpnaFduDr3wDmXw0fIPWcjzpl5rMbTxShnuRwJKUyu9QUZcKWKzGgmLsmAMV5mJlf8mtzEuOmsLKUYEDdOyafDGmkVYIM2teFI37fQNL75oq4NdLEHizaAS_TTp29a-R1mHxCOfeANYqTL2J8L_Dlgkzxs6aRtvKXzffI7_wvJt80tuXKwjXh31iFZPk2ryUs2mz-_TsazzHZ7UqYcKGEdKjDKWQNloViuBcMS14hsVZQGEVYWAczagpMAQktTCu1QOg5iSPjprw1tjAFdvQ9-142tOat7UHUPqu5B1WdQXefh1PGI-C-vc1EwIf4AZpZn_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Attitude Trajectory Planning for Spacecraft With Time-Varying Mass Using Sequential Conic Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Yueyang ; Hu, Qinglei ; Yang, Haoyang</creator><creatorcontrib>Liu, Yueyang ; Hu, Qinglei ; Yang, Haoyang</creatorcontrib><description>This article presents an attitude trajectory planning algorithm for spacecraft with time-varying mass and nonconvex state constraints. As a stepping stone, the problem of constrained attitude trajectory planning is posed as a finite-horizon optimal control problem (OCP). Then, the relaxation/convexification for control constraints is introduced that is proven to be lossless; i.e., the relaxed OCP is equivalent to the original one. By discretization and successive linearization, the relaxed OCP is then transformed as a sequence of second-order cone programming (SOCP) subproblems. Accordingly, the nonconvex motion constraints are converted into conic constraints. In particular, the so-called integration-correction technique is utilized to cancel the error resulting from the successive linearization, by which the recursive feasibility of the sequential SOCP is guaranteed. Moreover, the convergence to local optimality of the proposed algorithm is proved. Benefiting from the properties of the artificial potential function-based method, an initial solution can be rapidly generated to start the algorithm. Finally, the effectiveness of the trajectory planning algorithm is demonstrated by numerical examples.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2024.3439266</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerospace and electronic systems ; Attitude control ; conic optimization ; nonrigid spacecraft ; Optimization ; pointing constraints ; Propulsion ; Quaternions ; Space vehicles ; Trajectory planning</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2024-12, Vol.60 (6), p.9045-9059</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-5fa53cfe5a95fc9a87502630e8edee0b789eeabceaa9dcaf4aa3649836fe4f1a3</cites><orcidid>0000-0002-1646-0445 ; 0000-0003-0156-8960 ; 0000-0002-5563-310X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10623703$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10623703$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Yueyang</creatorcontrib><creatorcontrib>Hu, Qinglei</creatorcontrib><creatorcontrib>Yang, Haoyang</creatorcontrib><title>Attitude Trajectory Planning for Spacecraft With Time-Varying Mass Using Sequential Conic Optimization</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>This article presents an attitude trajectory planning algorithm for spacecraft with time-varying mass and nonconvex state constraints. As a stepping stone, the problem of constrained attitude trajectory planning is posed as a finite-horizon optimal control problem (OCP). Then, the relaxation/convexification for control constraints is introduced that is proven to be lossless; i.e., the relaxed OCP is equivalent to the original one. By discretization and successive linearization, the relaxed OCP is then transformed as a sequence of second-order cone programming (SOCP) subproblems. Accordingly, the nonconvex motion constraints are converted into conic constraints. In particular, the so-called integration-correction technique is utilized to cancel the error resulting from the successive linearization, by which the recursive feasibility of the sequential SOCP is guaranteed. Moreover, the convergence to local optimality of the proposed algorithm is proved. Benefiting from the properties of the artificial potential function-based method, an initial solution can be rapidly generated to start the algorithm. Finally, the effectiveness of the trajectory planning algorithm is demonstrated by numerical examples.</description><subject>Aerospace and electronic systems</subject><subject>Attitude control</subject><subject>conic optimization</subject><subject>nonrigid spacecraft</subject><subject>Optimization</subject><subject>pointing constraints</subject><subject>Propulsion</subject><subject>Quaternions</subject><subject>Space vehicles</subject><subject>Trajectory planning</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1KAzEUhYMoWKsPILjIC0xNJj8zWZZSf6BSoVNdDrfpjaa0MzVJF_XpnaFduDr3wDmXw0fIPWcjzpl5rMbTxShnuRwJKUyu9QUZcKWKzGgmLsmAMV5mJlf8mtzEuOmsLKUYEDdOyafDGmkVYIM2teFI37fQNL75oq4NdLEHizaAS_TTp29a-R1mHxCOfeANYqTL2J8L_Dlgkzxs6aRtvKXzffI7_wvJt80tuXKwjXh31iFZPk2ryUs2mz-_TsazzHZ7UqYcKGEdKjDKWQNloViuBcMS14hsVZQGEVYWAczagpMAQktTCu1QOg5iSPjprw1tjAFdvQ9-142tOat7UHUPqu5B1WdQXefh1PGI-C-vc1EwIf4AZpZn_Q</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Liu, Yueyang</creator><creator>Hu, Qinglei</creator><creator>Yang, Haoyang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1646-0445</orcidid><orcidid>https://orcid.org/0000-0003-0156-8960</orcidid><orcidid>https://orcid.org/0000-0002-5563-310X</orcidid></search><sort><creationdate>202412</creationdate><title>Attitude Trajectory Planning for Spacecraft With Time-Varying Mass Using Sequential Conic Optimization</title><author>Liu, Yueyang ; Hu, Qinglei ; Yang, Haoyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-5fa53cfe5a95fc9a87502630e8edee0b789eeabceaa9dcaf4aa3649836fe4f1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerospace and electronic systems</topic><topic>Attitude control</topic><topic>conic optimization</topic><topic>nonrigid spacecraft</topic><topic>Optimization</topic><topic>pointing constraints</topic><topic>Propulsion</topic><topic>Quaternions</topic><topic>Space vehicles</topic><topic>Trajectory planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yueyang</creatorcontrib><creatorcontrib>Hu, Qinglei</creatorcontrib><creatorcontrib>Yang, Haoyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Yueyang</au><au>Hu, Qinglei</au><au>Yang, Haoyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attitude Trajectory Planning for Spacecraft With Time-Varying Mass Using Sequential Conic Optimization</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2024-12</date><risdate>2024</risdate><volume>60</volume><issue>6</issue><spage>9045</spage><epage>9059</epage><pages>9045-9059</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>This article presents an attitude trajectory planning algorithm for spacecraft with time-varying mass and nonconvex state constraints. As a stepping stone, the problem of constrained attitude trajectory planning is posed as a finite-horizon optimal control problem (OCP). Then, the relaxation/convexification for control constraints is introduced that is proven to be lossless; i.e., the relaxed OCP is equivalent to the original one. By discretization and successive linearization, the relaxed OCP is then transformed as a sequence of second-order cone programming (SOCP) subproblems. Accordingly, the nonconvex motion constraints are converted into conic constraints. In particular, the so-called integration-correction technique is utilized to cancel the error resulting from the successive linearization, by which the recursive feasibility of the sequential SOCP is guaranteed. Moreover, the convergence to local optimality of the proposed algorithm is proved. Benefiting from the properties of the artificial potential function-based method, an initial solution can be rapidly generated to start the algorithm. Finally, the effectiveness of the trajectory planning algorithm is demonstrated by numerical examples.</abstract><pub>IEEE</pub><doi>10.1109/TAES.2024.3439266</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1646-0445</orcidid><orcidid>https://orcid.org/0000-0003-0156-8960</orcidid><orcidid>https://orcid.org/0000-0002-5563-310X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2024-12, Vol.60 (6), p.9045-9059
issn 0018-9251
1557-9603
language eng
recordid cdi_crossref_primary_10_1109_TAES_2024_3439266
source IEEE Electronic Library (IEL)
subjects Aerospace and electronic systems
Attitude control
conic optimization
nonrigid spacecraft
Optimization
pointing constraints
Propulsion
Quaternions
Space vehicles
Trajectory planning
title Attitude Trajectory Planning for Spacecraft With Time-Varying Mass Using Sequential Conic Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attitude%20Trajectory%20Planning%20for%20Spacecraft%20With%20Time-Varying%20Mass%20Using%20Sequential%20Conic%20Optimization&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Liu,%20Yueyang&rft.date=2024-12&rft.volume=60&rft.issue=6&rft.spage=9045&rft.epage=9059&rft.pages=9045-9059&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2024.3439266&rft_dat=%3Ccrossref_RIE%3E10_1109_TAES_2024_3439266%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10623703&rfr_iscdi=true