Fast Adaptive Jamming Resource Allocation Against Frequency-Hopping Spread Spectrum in Wireless Sensor Networks via Meta-Deep-Reinforcement-Learning
Partial-band noise jamming is an important countermeasure against frequency-hopping spread spectrum technology in wireless sensor networks, and the jamming resource allocation (JRA) problem involved is a high-dimensional combinatorial optimization and also an NP-hard problem. Moreover, the users can...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2024-12, Vol.60 (6), p.7676-7693 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7693 |
---|---|
container_issue | 6 |
container_start_page | 7676 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 60 |
creator | Rao, Ning Xu, Hua Qi, Zisen Wang, Dan Zhang, Yue |
description | Partial-band noise jamming is an important countermeasure against frequency-hopping spread spectrum technology in wireless sensor networks, and the jamming resource allocation (JRA) problem involved is a high-dimensional combinatorial optimization and also an NP-hard problem. Moreover, the users can dynamically alter their communication status, such as changing the channel spectrum distributions of hopping sets, posing additional difficulties for JRA. This article develops two methods to address the aforementioned challenges. First, a deep reinforcement learning (DRL)-based method is proposed for efficient JRA optimization, with the jamming scheme of each jamming node decided sequentially by the policy neural network, and its parameters are updated through trust region policy optimization (TRPO) within a trust region to ensure stable and fast convergence. Second, we propose a meta-TRPO-based method to improve the generalization capability of the policy network. After the meta-training process, it can update the meta-policy network with just a few fine-tuning steps and quickly obtain a task-specific policy for the fresh task. Extensive simulation results show that the proposed DRL-based method converges faster than other DRL methods. In addition, the proposed meta-TRPO-based method can rapidly adapt to unseen jamming tasks with only a small quantity of training trajectories. |
doi_str_mv | 10.1109/TAES.2024.3418944 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAES_2024_3418944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10571360</ieee_id><sourcerecordid>3141611766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-a239f0544451f5186659e146038b8b274a1a234955089c53d26cb81155b056a23</originalsourceid><addsrcrecordid>eNpNkE1OwzAQhS0EEqVwACQWlli7eBI7TZYRUH5UQGqLWEZuOqlcGjvYblHvwYFxVRasRqP5Zt68R8gl8AEAL25m5f10kPBEDFIBeSHEEemBlENWZDw9Jj3OIWdFIuGUnHm_iq3IRdojPyPlAy0Xqgt6i_RZta02SzpBbzeuRlqu17ZWQVtDy6XSJsIjh18bNPWOPdqu29PTzqFaxIJ1cJuWakM_tMM1ek-naLx19BXDt3Wfnm61oi8YFLtD7NgEtWlsFGrRBDZG5Uw8eE5OGrX2ePFX--R9dD-7fWTjt4en23LMahhmgakkLRouhRASGgl5lskCQUTD-TyfJ0OhICKikJLnRS3TRZLV8xxiLHMuszjqk-vD3c7ZaMmHahVdmyhZpSAggyiTRQoOVO2s9w6bqnO6VW5XAa_24Vf78Kt9-NVf-HHn6rCjEfEfL4eQxv9-AU8wgRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141611766</pqid></control><display><type>article</type><title>Fast Adaptive Jamming Resource Allocation Against Frequency-Hopping Spread Spectrum in Wireless Sensor Networks via Meta-Deep-Reinforcement-Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Rao, Ning ; Xu, Hua ; Qi, Zisen ; Wang, Dan ; Zhang, Yue</creator><creatorcontrib>Rao, Ning ; Xu, Hua ; Qi, Zisen ; Wang, Dan ; Zhang, Yue</creatorcontrib><description>Partial-band noise jamming is an important countermeasure against frequency-hopping spread spectrum technology in wireless sensor networks, and the jamming resource allocation (JRA) problem involved is a high-dimensional combinatorial optimization and also an NP-hard problem. Moreover, the users can dynamically alter their communication status, such as changing the channel spectrum distributions of hopping sets, posing additional difficulties for JRA. This article develops two methods to address the aforementioned challenges. First, a deep reinforcement learning (DRL)-based method is proposed for efficient JRA optimization, with the jamming scheme of each jamming node decided sequentially by the policy neural network, and its parameters are updated through trust region policy optimization (TRPO) within a trust region to ensure stable and fast convergence. Second, we propose a meta-TRPO-based method to improve the generalization capability of the policy network. After the meta-training process, it can update the meta-policy network with just a few fine-tuning steps and quickly obtain a task-specific policy for the fresh task. Extensive simulation results show that the proposed DRL-based method converges faster than other DRL methods. In addition, the proposed meta-TRPO-based method can rapidly adapt to unseen jamming tasks with only a small quantity of training trajectories.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2024.3418944</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerospace and electronic systems ; Combinatorial analysis ; Decision making ; Deep learning ; Deep reinforcement learning ; Frequency hopping ; Jamming ; jamming against frequency-hopping spread spectrum (FHSS) ; meta-learning ; Neural networks ; Optimization ; Resource allocation ; Resource management ; Spread spectrum ; Task analysis ; Wireless sensor networks ; wireless sensor networks (WSNs)</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2024-12, Vol.60 (6), p.7676-7693</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6664-8761 ; 0000-0003-3801-4187 ; 0009-0008-6340-5749 ; 0000-0003-3157-4886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10571360$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10571360$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rao, Ning</creatorcontrib><creatorcontrib>Xu, Hua</creatorcontrib><creatorcontrib>Qi, Zisen</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><title>Fast Adaptive Jamming Resource Allocation Against Frequency-Hopping Spread Spectrum in Wireless Sensor Networks via Meta-Deep-Reinforcement-Learning</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>Partial-band noise jamming is an important countermeasure against frequency-hopping spread spectrum technology in wireless sensor networks, and the jamming resource allocation (JRA) problem involved is a high-dimensional combinatorial optimization and also an NP-hard problem. Moreover, the users can dynamically alter their communication status, such as changing the channel spectrum distributions of hopping sets, posing additional difficulties for JRA. This article develops two methods to address the aforementioned challenges. First, a deep reinforcement learning (DRL)-based method is proposed for efficient JRA optimization, with the jamming scheme of each jamming node decided sequentially by the policy neural network, and its parameters are updated through trust region policy optimization (TRPO) within a trust region to ensure stable and fast convergence. Second, we propose a meta-TRPO-based method to improve the generalization capability of the policy network. After the meta-training process, it can update the meta-policy network with just a few fine-tuning steps and quickly obtain a task-specific policy for the fresh task. Extensive simulation results show that the proposed DRL-based method converges faster than other DRL methods. In addition, the proposed meta-TRPO-based method can rapidly adapt to unseen jamming tasks with only a small quantity of training trajectories.</description><subject>Aerospace and electronic systems</subject><subject>Combinatorial analysis</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Deep reinforcement learning</subject><subject>Frequency hopping</subject><subject>Jamming</subject><subject>jamming against frequency-hopping spread spectrum (FHSS)</subject><subject>meta-learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Spread spectrum</subject><subject>Task analysis</subject><subject>Wireless sensor networks</subject><subject>wireless sensor networks (WSNs)</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1OwzAQhS0EEqVwACQWlli7eBI7TZYRUH5UQGqLWEZuOqlcGjvYblHvwYFxVRasRqP5Zt68R8gl8AEAL25m5f10kPBEDFIBeSHEEemBlENWZDw9Jj3OIWdFIuGUnHm_iq3IRdojPyPlAy0Xqgt6i_RZta02SzpBbzeuRlqu17ZWQVtDy6XSJsIjh18bNPWOPdqu29PTzqFaxIJ1cJuWakM_tMM1ek-naLx19BXDt3Wfnm61oi8YFLtD7NgEtWlsFGrRBDZG5Uw8eE5OGrX2ePFX--R9dD-7fWTjt4en23LMahhmgakkLRouhRASGgl5lskCQUTD-TyfJ0OhICKikJLnRS3TRZLV8xxiLHMuszjqk-vD3c7ZaMmHahVdmyhZpSAggyiTRQoOVO2s9w6bqnO6VW5XAa_24Vf78Kt9-NVf-HHn6rCjEfEfL4eQxv9-AU8wgRA</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Rao, Ning</creator><creator>Xu, Hua</creator><creator>Qi, Zisen</creator><creator>Wang, Dan</creator><creator>Zhang, Yue</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6664-8761</orcidid><orcidid>https://orcid.org/0000-0003-3801-4187</orcidid><orcidid>https://orcid.org/0009-0008-6340-5749</orcidid><orcidid>https://orcid.org/0000-0003-3157-4886</orcidid></search><sort><creationdate>20241201</creationdate><title>Fast Adaptive Jamming Resource Allocation Against Frequency-Hopping Spread Spectrum in Wireless Sensor Networks via Meta-Deep-Reinforcement-Learning</title><author>Rao, Ning ; Xu, Hua ; Qi, Zisen ; Wang, Dan ; Zhang, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-a239f0544451f5186659e146038b8b274a1a234955089c53d26cb81155b056a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerospace and electronic systems</topic><topic>Combinatorial analysis</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Deep reinforcement learning</topic><topic>Frequency hopping</topic><topic>Jamming</topic><topic>jamming against frequency-hopping spread spectrum (FHSS)</topic><topic>meta-learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Spread spectrum</topic><topic>Task analysis</topic><topic>Wireless sensor networks</topic><topic>wireless sensor networks (WSNs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rao, Ning</creatorcontrib><creatorcontrib>Xu, Hua</creatorcontrib><creatorcontrib>Qi, Zisen</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rao, Ning</au><au>Xu, Hua</au><au>Qi, Zisen</au><au>Wang, Dan</au><au>Zhang, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Adaptive Jamming Resource Allocation Against Frequency-Hopping Spread Spectrum in Wireless Sensor Networks via Meta-Deep-Reinforcement-Learning</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>60</volume><issue>6</issue><spage>7676</spage><epage>7693</epage><pages>7676-7693</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>Partial-band noise jamming is an important countermeasure against frequency-hopping spread spectrum technology in wireless sensor networks, and the jamming resource allocation (JRA) problem involved is a high-dimensional combinatorial optimization and also an NP-hard problem. Moreover, the users can dynamically alter their communication status, such as changing the channel spectrum distributions of hopping sets, posing additional difficulties for JRA. This article develops two methods to address the aforementioned challenges. First, a deep reinforcement learning (DRL)-based method is proposed for efficient JRA optimization, with the jamming scheme of each jamming node decided sequentially by the policy neural network, and its parameters are updated through trust region policy optimization (TRPO) within a trust region to ensure stable and fast convergence. Second, we propose a meta-TRPO-based method to improve the generalization capability of the policy network. After the meta-training process, it can update the meta-policy network with just a few fine-tuning steps and quickly obtain a task-specific policy for the fresh task. Extensive simulation results show that the proposed DRL-based method converges faster than other DRL methods. In addition, the proposed meta-TRPO-based method can rapidly adapt to unseen jamming tasks with only a small quantity of training trajectories.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2024.3418944</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6664-8761</orcidid><orcidid>https://orcid.org/0000-0003-3801-4187</orcidid><orcidid>https://orcid.org/0009-0008-6340-5749</orcidid><orcidid>https://orcid.org/0000-0003-3157-4886</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2024-12, Vol.60 (6), p.7676-7693 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAES_2024_3418944 |
source | IEEE Electronic Library (IEL) |
subjects | Aerospace and electronic systems Combinatorial analysis Decision making Deep learning Deep reinforcement learning Frequency hopping Jamming jamming against frequency-hopping spread spectrum (FHSS) meta-learning Neural networks Optimization Resource allocation Resource management Spread spectrum Task analysis Wireless sensor networks wireless sensor networks (WSNs) |
title | Fast Adaptive Jamming Resource Allocation Against Frequency-Hopping Spread Spectrum in Wireless Sensor Networks via Meta-Deep-Reinforcement-Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A58%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Adaptive%20Jamming%20Resource%20Allocation%20Against%20Frequency-Hopping%20Spread%20Spectrum%20in%20Wireless%20Sensor%20Networks%20via%20Meta-Deep-Reinforcement-Learning&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Rao,%20Ning&rft.date=2024-12-01&rft.volume=60&rft.issue=6&rft.spage=7676&rft.epage=7693&rft.pages=7676-7693&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2024.3418944&rft_dat=%3Cproquest_RIE%3E3141611766%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141611766&rft_id=info:pmid/&rft_ieee_id=10571360&rfr_iscdi=true |