On the Mechanisms of Electroaerodynamic Propulsion via Force Analysis

Electroaerodynamic (EAD) propulsion is attractive as atmosphere propulsion due to the unique properties of silence and combustion-free emission. EAD propulsion uses two electrodes as an engine to generate propulsive thrust, with the produced thrust being a combination of various forces acting on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2024-06, Vol.60 (3), p.3417-3426
Hauptverfasser: Leng, Jiaming, Liu, Zhiwei, Qi, Mingjing, Yan, Xiaojun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3426
container_issue 3
container_start_page 3417
container_title IEEE transactions on aerospace and electronic systems
container_volume 60
creator Leng, Jiaming
Liu, Zhiwei
Qi, Mingjing
Yan, Xiaojun
description Electroaerodynamic (EAD) propulsion is attractive as atmosphere propulsion due to the unique properties of silence and combustion-free emission. EAD propulsion uses two electrodes as an engine to generate propulsive thrust, with the produced thrust being a combination of various forces acting on the electrode. Understanding the effect of those forces on EAD thrust generation is crucial for discovering the physical origin of EAD thrust and advancing this technology for practical applications. In this study, using a wire-to-cylinder EAD system, the effect of each force on the thrust generation is quantified and analyzed. First, EAD thrust is the net force of electrostatic forces and aerodynamic forces acting on the electrodes. Second, electrostatic forces are comprised of electrostatic attraction acting on the collecting electrode and electrostatic repulsion acting on the emitting electrode, both exerted by the discharge-induced ions. Third, the electrostatic attraction on the collecting electrode, rather than the electrostatic repulsion on the emitting electrode, plays a significant role in EAD thrust generation. Lastly, the aerodynamic force, manifested as the drag force arises when the ionic wind passes through the electrodes, leading to a reduction in the produced EAD thrust. Specifically, the drag force primarily originates from the pressure drag generated on the collecting electrode. These fundamental findings facilitate structural design and optimization methods for electrodes to achieve high EAD thrust, with a particular focus on enhancing the aerodynamics of the collecting electrode and reducing the radius of the emitting electrode.
doi_str_mv 10.1109/TAES.2024.3361428
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAES_2024_3361428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10419010</ieee_id><sourcerecordid>3066938948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-c216d0cb274dd821cffc23ac5aa932181ab7f35410e2e6dc67c46a1b7f9fd4a53</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWKsPIHgIeN6aSbLZ5FjKVoVKBes5pNmEpmw3NdkKfXu3tAcvM8zw_cPwIfQIZAJA1MtqWn9NKKF8wpgATuUVGkFZVoUShF2jESEgC0VLuEV3OW-HkUvORqhedrjfOPzh7MZ0Ie8yjh7XrbN9isal2Bw7swsWf6a4P7Q5xA7_BoPnMVmHp51pjznke3TjTZvdw6WP0fe8Xs3eisXy9X02XRSWctEPFURD7JpWvGkkBeu9pczY0hjFKEgw68qzkgNx1InGispyYWBYKt9wU7Ixej7f3af4c3C519t4SMMTWTMihGJScTlQcKZsijkn5_U-hZ1JRw1En2zpky19sqUvtobM0zkTnHP_eA6KAGF_nGJmLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066938948</pqid></control><display><type>article</type><title>On the Mechanisms of Electroaerodynamic Propulsion via Force Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Leng, Jiaming ; Liu, Zhiwei ; Qi, Mingjing ; Yan, Xiaojun</creator><creatorcontrib>Leng, Jiaming ; Liu, Zhiwei ; Qi, Mingjing ; Yan, Xiaojun</creatorcontrib><description>Electroaerodynamic (EAD) propulsion is attractive as atmosphere propulsion due to the unique properties of silence and combustion-free emission. EAD propulsion uses two electrodes as an engine to generate propulsive thrust, with the produced thrust being a combination of various forces acting on the electrode. Understanding the effect of those forces on EAD thrust generation is crucial for discovering the physical origin of EAD thrust and advancing this technology for practical applications. In this study, using a wire-to-cylinder EAD system, the effect of each force on the thrust generation is quantified and analyzed. First, EAD thrust is the net force of electrostatic forces and aerodynamic forces acting on the electrodes. Second, electrostatic forces are comprised of electrostatic attraction acting on the collecting electrode and electrostatic repulsion acting on the emitting electrode, both exerted by the discharge-induced ions. Third, the electrostatic attraction on the collecting electrode, rather than the electrostatic repulsion on the emitting electrode, plays a significant role in EAD thrust generation. Lastly, the aerodynamic force, manifested as the drag force arises when the ionic wind passes through the electrodes, leading to a reduction in the produced EAD thrust. Specifically, the drag force primarily originates from the pressure drag generated on the collecting electrode. These fundamental findings facilitate structural design and optimization methods for electrodes to achieve high EAD thrust, with a particular focus on enhancing the aerodynamics of the collecting electrode and reducing the radius of the emitting electrode.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2024.3361428</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerodynamic forces ; Aerodynamics ; Attraction ; Design optimization ; Drag ; Electrodes ; Electrostatics ; Force ; Force measurement ; Ions ; Pressure drag ; Propulsion ; Structural design ; Thrust</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2024-06, Vol.60 (3), p.3417-3426</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-c216d0cb274dd821cffc23ac5aa932181ab7f35410e2e6dc67c46a1b7f9fd4a53</cites><orcidid>0000-0002-1423-4663 ; 0000-0002-6151-7279 ; 0000-0002-1824-2417 ; 0000-0002-7287-7333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10419010$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10419010$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Leng, Jiaming</creatorcontrib><creatorcontrib>Liu, Zhiwei</creatorcontrib><creatorcontrib>Qi, Mingjing</creatorcontrib><creatorcontrib>Yan, Xiaojun</creatorcontrib><title>On the Mechanisms of Electroaerodynamic Propulsion via Force Analysis</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>Electroaerodynamic (EAD) propulsion is attractive as atmosphere propulsion due to the unique properties of silence and combustion-free emission. EAD propulsion uses two electrodes as an engine to generate propulsive thrust, with the produced thrust being a combination of various forces acting on the electrode. Understanding the effect of those forces on EAD thrust generation is crucial for discovering the physical origin of EAD thrust and advancing this technology for practical applications. In this study, using a wire-to-cylinder EAD system, the effect of each force on the thrust generation is quantified and analyzed. First, EAD thrust is the net force of electrostatic forces and aerodynamic forces acting on the electrodes. Second, electrostatic forces are comprised of electrostatic attraction acting on the collecting electrode and electrostatic repulsion acting on the emitting electrode, both exerted by the discharge-induced ions. Third, the electrostatic attraction on the collecting electrode, rather than the electrostatic repulsion on the emitting electrode, plays a significant role in EAD thrust generation. Lastly, the aerodynamic force, manifested as the drag force arises when the ionic wind passes through the electrodes, leading to a reduction in the produced EAD thrust. Specifically, the drag force primarily originates from the pressure drag generated on the collecting electrode. These fundamental findings facilitate structural design and optimization methods for electrodes to achieve high EAD thrust, with a particular focus on enhancing the aerodynamics of the collecting electrode and reducing the radius of the emitting electrode.</description><subject>Aerodynamic forces</subject><subject>Aerodynamics</subject><subject>Attraction</subject><subject>Design optimization</subject><subject>Drag</subject><subject>Electrodes</subject><subject>Electrostatics</subject><subject>Force</subject><subject>Force measurement</subject><subject>Ions</subject><subject>Pressure drag</subject><subject>Propulsion</subject><subject>Structural design</subject><subject>Thrust</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFKAzEQhoMoWKsPIHgIeN6aSbLZ5FjKVoVKBes5pNmEpmw3NdkKfXu3tAcvM8zw_cPwIfQIZAJA1MtqWn9NKKF8wpgATuUVGkFZVoUShF2jESEgC0VLuEV3OW-HkUvORqhedrjfOPzh7MZ0Ie8yjh7XrbN9isal2Bw7swsWf6a4P7Q5xA7_BoPnMVmHp51pjznke3TjTZvdw6WP0fe8Xs3eisXy9X02XRSWctEPFURD7JpWvGkkBeu9pczY0hjFKEgw68qzkgNx1InGispyYWBYKt9wU7Ixej7f3af4c3C519t4SMMTWTMihGJScTlQcKZsijkn5_U-hZ1JRw1En2zpky19sqUvtobM0zkTnHP_eA6KAGF_nGJmLw</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Leng, Jiaming</creator><creator>Liu, Zhiwei</creator><creator>Qi, Mingjing</creator><creator>Yan, Xiaojun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1423-4663</orcidid><orcidid>https://orcid.org/0000-0002-6151-7279</orcidid><orcidid>https://orcid.org/0000-0002-1824-2417</orcidid><orcidid>https://orcid.org/0000-0002-7287-7333</orcidid></search><sort><creationdate>20240601</creationdate><title>On the Mechanisms of Electroaerodynamic Propulsion via Force Analysis</title><author>Leng, Jiaming ; Liu, Zhiwei ; Qi, Mingjing ; Yan, Xiaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-c216d0cb274dd821cffc23ac5aa932181ab7f35410e2e6dc67c46a1b7f9fd4a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerodynamic forces</topic><topic>Aerodynamics</topic><topic>Attraction</topic><topic>Design optimization</topic><topic>Drag</topic><topic>Electrodes</topic><topic>Electrostatics</topic><topic>Force</topic><topic>Force measurement</topic><topic>Ions</topic><topic>Pressure drag</topic><topic>Propulsion</topic><topic>Structural design</topic><topic>Thrust</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leng, Jiaming</creatorcontrib><creatorcontrib>Liu, Zhiwei</creatorcontrib><creatorcontrib>Qi, Mingjing</creatorcontrib><creatorcontrib>Yan, Xiaojun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Leng, Jiaming</au><au>Liu, Zhiwei</au><au>Qi, Mingjing</au><au>Yan, Xiaojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Mechanisms of Electroaerodynamic Propulsion via Force Analysis</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>60</volume><issue>3</issue><spage>3417</spage><epage>3426</epage><pages>3417-3426</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>Electroaerodynamic (EAD) propulsion is attractive as atmosphere propulsion due to the unique properties of silence and combustion-free emission. EAD propulsion uses two electrodes as an engine to generate propulsive thrust, with the produced thrust being a combination of various forces acting on the electrode. Understanding the effect of those forces on EAD thrust generation is crucial for discovering the physical origin of EAD thrust and advancing this technology for practical applications. In this study, using a wire-to-cylinder EAD system, the effect of each force on the thrust generation is quantified and analyzed. First, EAD thrust is the net force of electrostatic forces and aerodynamic forces acting on the electrodes. Second, electrostatic forces are comprised of electrostatic attraction acting on the collecting electrode and electrostatic repulsion acting on the emitting electrode, both exerted by the discharge-induced ions. Third, the electrostatic attraction on the collecting electrode, rather than the electrostatic repulsion on the emitting electrode, plays a significant role in EAD thrust generation. Lastly, the aerodynamic force, manifested as the drag force arises when the ionic wind passes through the electrodes, leading to a reduction in the produced EAD thrust. Specifically, the drag force primarily originates from the pressure drag generated on the collecting electrode. These fundamental findings facilitate structural design and optimization methods for electrodes to achieve high EAD thrust, with a particular focus on enhancing the aerodynamics of the collecting electrode and reducing the radius of the emitting electrode.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2024.3361428</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1423-4663</orcidid><orcidid>https://orcid.org/0000-0002-6151-7279</orcidid><orcidid>https://orcid.org/0000-0002-1824-2417</orcidid><orcidid>https://orcid.org/0000-0002-7287-7333</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2024-06, Vol.60 (3), p.3417-3426
issn 0018-9251
1557-9603
language eng
recordid cdi_crossref_primary_10_1109_TAES_2024_3361428
source IEEE Electronic Library (IEL)
subjects Aerodynamic forces
Aerodynamics
Attraction
Design optimization
Drag
Electrodes
Electrostatics
Force
Force measurement
Ions
Pressure drag
Propulsion
Structural design
Thrust
title On the Mechanisms of Electroaerodynamic Propulsion via Force Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Mechanisms%20of%20Electroaerodynamic%20Propulsion%20via%20Force%20Analysis&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Leng,%20Jiaming&rft.date=2024-06-01&rft.volume=60&rft.issue=3&rft.spage=3417&rft.epage=3426&rft.pages=3417-3426&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2024.3361428&rft_dat=%3Cproquest_RIE%3E3066938948%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066938948&rft_id=info:pmid/&rft_ieee_id=10419010&rfr_iscdi=true