Approximating Posterior Cramér-Rao Bounds for Nonlinear Filtering Problems Using Gaussian Mixture Models

The posterior Cramér-Rao bound (PCRB) is a fundamental tool to assess the accuracy limit of the Bayesian estimation problem. In this article, we propose a novel framework to compute the PCRB for the general nonlinear filtering problem with additive white Gaussian noise. It uses the Gaussian mixture...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2021-04, Vol.57 (2), p.984-1001
Hauptverfasser: Zhang, Shuo, Chen, Defeng, Fu, Tuo, Cao, Huawei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1001
container_issue 2
container_start_page 984
container_title IEEE transactions on aerospace and electronic systems
container_volume 57
creator Zhang, Shuo
Chen, Defeng
Fu, Tuo
Cao, Huawei
description The posterior Cramér-Rao bound (PCRB) is a fundamental tool to assess the accuracy limit of the Bayesian estimation problem. In this article, we propose a novel framework to compute the PCRB for the general nonlinear filtering problem with additive white Gaussian noise. It uses the Gaussian mixture model to represent and propagate the uncertainty contained in the state vector and uses the Gauss-Hermite quadrature rule to compute mathematical expectations of vector-valued nonlinear functions of the state variable. The detailed pseudocodes for both the small and large component covariance cases are also presented. Three numerical experiments are conducted. All of the results show that the proposed method has high accuracy and it is more efficient than the plain Monte Carlo integration approach in the small component covariance case.
doi_str_mv 10.1109/TAES.2020.3035426
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAES_2020_3035426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9247302</ieee_id><sourcerecordid>2512222082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-4025dedc5803263bb3c6758aba79fe2956824a5facb06760079dd569d13fc0fc3</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcPIN4EvO48SZq0uZzDTWFT0e06pG0qGV0zkxbmI_kcvpgpE8_N4Rz-_xz-D6FrAhNCQN6tpw_vEwoUJgwYT6k4QSPCeZZIAewUjQBInkjKyTm6CGEbxzRP2QjZ6X7v3cHudGfbD_zqQme8dR7PvN79fPvkTTt87_q2CriO62fXNrY12uO5bQbpYPKuaMwu4E0YxoXuQ7C6xSt76Hpv8MpVpgmX6KzWTTBXf32MNvOH9ewxWb4snmbTZVIyJrokBcorU5U8B0YFKwpWioznutCZrA2VXOQ01bzWZQEiEwCZrCouZEVYXUJdsjG6Pd6NuT57Ezq1db1v40sV49NYkNOoIkdV6V0I3tRq7yME_6UIqIGoGoiqgaj6Ixo9N0ePNcb86yVNMwaU_QLkLXOE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512222082</pqid></control><display><type>article</type><title>Approximating Posterior Cramér-Rao Bounds for Nonlinear Filtering Problems Using Gaussian Mixture Models</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Shuo ; Chen, Defeng ; Fu, Tuo ; Cao, Huawei</creator><creatorcontrib>Zhang, Shuo ; Chen, Defeng ; Fu, Tuo ; Cao, Huawei</creatorcontrib><description>The posterior Cramér-Rao bound (PCRB) is a fundamental tool to assess the accuracy limit of the Bayesian estimation problem. In this article, we propose a novel framework to compute the PCRB for the general nonlinear filtering problem with additive white Gaussian noise. It uses the Gaussian mixture model to represent and propagate the uncertainty contained in the state vector and uses the Gauss-Hermite quadrature rule to compute mathematical expectations of vector-valued nonlinear functions of the state variable. The detailed pseudocodes for both the small and large component covariance cases are also presented. Three numerical experiments are conducted. All of the results show that the proposed method has high accuracy and it is more efficient than the plain Monte Carlo integration approach in the small component covariance case.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2020.3035426</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; AWGN ; Codes ; Computational modeling ; Covariance ; Filtration ; Gaussian mixture model ; Gaussian mixture model (GMM) ; Mathematical analysis ; Monte Carlo methods ; nonlinear state estimation ; posterior Cramér–Rao bound (PCRB) ; Probabilistic models ; Quadratures ; Random noise ; State vectors ; Target tracking ; Uncertainty</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2021-04, Vol.57 (2), p.984-1001</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-4025dedc5803263bb3c6758aba79fe2956824a5facb06760079dd569d13fc0fc3</citedby><cites>FETCH-LOGICAL-c336t-4025dedc5803263bb3c6758aba79fe2956824a5facb06760079dd569d13fc0fc3</cites><orcidid>0000-0002-0138-2149 ; 0000-0001-8826-3048 ; 0000-0002-9015-549X ; 0000-0003-2192-7115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9247302$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Zhang, Shuo</creatorcontrib><creatorcontrib>Chen, Defeng</creatorcontrib><creatorcontrib>Fu, Tuo</creatorcontrib><creatorcontrib>Cao, Huawei</creatorcontrib><title>Approximating Posterior Cramér-Rao Bounds for Nonlinear Filtering Problems Using Gaussian Mixture Models</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>The posterior Cramér-Rao bound (PCRB) is a fundamental tool to assess the accuracy limit of the Bayesian estimation problem. In this article, we propose a novel framework to compute the PCRB for the general nonlinear filtering problem with additive white Gaussian noise. It uses the Gaussian mixture model to represent and propagate the uncertainty contained in the state vector and uses the Gauss-Hermite quadrature rule to compute mathematical expectations of vector-valued nonlinear functions of the state variable. The detailed pseudocodes for both the small and large component covariance cases are also presented. Three numerical experiments are conducted. All of the results show that the proposed method has high accuracy and it is more efficient than the plain Monte Carlo integration approach in the small component covariance case.</description><subject>Accuracy</subject><subject>AWGN</subject><subject>Codes</subject><subject>Computational modeling</subject><subject>Covariance</subject><subject>Filtration</subject><subject>Gaussian mixture model</subject><subject>Gaussian mixture model (GMM)</subject><subject>Mathematical analysis</subject><subject>Monte Carlo methods</subject><subject>nonlinear state estimation</subject><subject>posterior Cramér–Rao bound (PCRB)</subject><subject>Probabilistic models</subject><subject>Quadratures</subject><subject>Random noise</subject><subject>State vectors</subject><subject>Target tracking</subject><subject>Uncertainty</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kNFKwzAUhoMoOKcPIN4EvO48SZq0uZzDTWFT0e06pG0qGV0zkxbmI_kcvpgpE8_N4Rz-_xz-D6FrAhNCQN6tpw_vEwoUJgwYT6k4QSPCeZZIAewUjQBInkjKyTm6CGEbxzRP2QjZ6X7v3cHudGfbD_zqQme8dR7PvN79fPvkTTt87_q2CriO62fXNrY12uO5bQbpYPKuaMwu4E0YxoXuQ7C6xSt76Hpv8MpVpgmX6KzWTTBXf32MNvOH9ewxWb4snmbTZVIyJrokBcorU5U8B0YFKwpWioznutCZrA2VXOQ01bzWZQEiEwCZrCouZEVYXUJdsjG6Pd6NuT57Ezq1db1v40sV49NYkNOoIkdV6V0I3tRq7yME_6UIqIGoGoiqgaj6Ixo9N0ePNcb86yVNMwaU_QLkLXOE</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Zhang, Shuo</creator><creator>Chen, Defeng</creator><creator>Fu, Tuo</creator><creator>Cao, Huawei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0138-2149</orcidid><orcidid>https://orcid.org/0000-0001-8826-3048</orcidid><orcidid>https://orcid.org/0000-0002-9015-549X</orcidid><orcidid>https://orcid.org/0000-0003-2192-7115</orcidid></search><sort><creationdate>20210401</creationdate><title>Approximating Posterior Cramér-Rao Bounds for Nonlinear Filtering Problems Using Gaussian Mixture Models</title><author>Zhang, Shuo ; Chen, Defeng ; Fu, Tuo ; Cao, Huawei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-4025dedc5803263bb3c6758aba79fe2956824a5facb06760079dd569d13fc0fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>AWGN</topic><topic>Codes</topic><topic>Computational modeling</topic><topic>Covariance</topic><topic>Filtration</topic><topic>Gaussian mixture model</topic><topic>Gaussian mixture model (GMM)</topic><topic>Mathematical analysis</topic><topic>Monte Carlo methods</topic><topic>nonlinear state estimation</topic><topic>posterior Cramér–Rao bound (PCRB)</topic><topic>Probabilistic models</topic><topic>Quadratures</topic><topic>Random noise</topic><topic>State vectors</topic><topic>Target tracking</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shuo</creatorcontrib><creatorcontrib>Chen, Defeng</creatorcontrib><creatorcontrib>Fu, Tuo</creatorcontrib><creatorcontrib>Cao, Huawei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shuo</au><au>Chen, Defeng</au><au>Fu, Tuo</au><au>Cao, Huawei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximating Posterior Cramér-Rao Bounds for Nonlinear Filtering Problems Using Gaussian Mixture Models</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>57</volume><issue>2</issue><spage>984</spage><epage>1001</epage><pages>984-1001</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>The posterior Cramér-Rao bound (PCRB) is a fundamental tool to assess the accuracy limit of the Bayesian estimation problem. In this article, we propose a novel framework to compute the PCRB for the general nonlinear filtering problem with additive white Gaussian noise. It uses the Gaussian mixture model to represent and propagate the uncertainty contained in the state vector and uses the Gauss-Hermite quadrature rule to compute mathematical expectations of vector-valued nonlinear functions of the state variable. The detailed pseudocodes for both the small and large component covariance cases are also presented. Three numerical experiments are conducted. All of the results show that the proposed method has high accuracy and it is more efficient than the plain Monte Carlo integration approach in the small component covariance case.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2020.3035426</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-0138-2149</orcidid><orcidid>https://orcid.org/0000-0001-8826-3048</orcidid><orcidid>https://orcid.org/0000-0002-9015-549X</orcidid><orcidid>https://orcid.org/0000-0003-2192-7115</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2021-04, Vol.57 (2), p.984-1001
issn 0018-9251
1557-9603
language eng
recordid cdi_crossref_primary_10_1109_TAES_2020_3035426
source IEEE Electronic Library (IEL)
subjects Accuracy
AWGN
Codes
Computational modeling
Covariance
Filtration
Gaussian mixture model
Gaussian mixture model (GMM)
Mathematical analysis
Monte Carlo methods
nonlinear state estimation
posterior Cramér–Rao bound (PCRB)
Probabilistic models
Quadratures
Random noise
State vectors
Target tracking
Uncertainty
title Approximating Posterior Cramér-Rao Bounds for Nonlinear Filtering Problems Using Gaussian Mixture Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T11%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximating%20Posterior%20Cram%C3%A9r-Rao%20Bounds%20for%20Nonlinear%20Filtering%20Problems%20Using%20Gaussian%20Mixture%20Models&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Zhang,%20Shuo&rft.date=2021-04-01&rft.volume=57&rft.issue=2&rft.spage=984&rft.epage=1001&rft.pages=984-1001&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2020.3035426&rft_dat=%3Cproquest_cross%3E2512222082%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512222082&rft_id=info:pmid/&rft_ieee_id=9247302&rfr_iscdi=true