Approximating Posterior Cramér-Rao Bounds for Nonlinear Filtering Problems Using Gaussian Mixture Models
The posterior Cramér-Rao bound (PCRB) is a fundamental tool to assess the accuracy limit of the Bayesian estimation problem. In this article, we propose a novel framework to compute the PCRB for the general nonlinear filtering problem with additive white Gaussian noise. It uses the Gaussian mixture...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2021-04, Vol.57 (2), p.984-1001 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1001 |
---|---|
container_issue | 2 |
container_start_page | 984 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 57 |
creator | Zhang, Shuo Chen, Defeng Fu, Tuo Cao, Huawei |
description | The posterior Cramér-Rao bound (PCRB) is a fundamental tool to assess the accuracy limit of the Bayesian estimation problem. In this article, we propose a novel framework to compute the PCRB for the general nonlinear filtering problem with additive white Gaussian noise. It uses the Gaussian mixture model to represent and propagate the uncertainty contained in the state vector and uses the Gauss-Hermite quadrature rule to compute mathematical expectations of vector-valued nonlinear functions of the state variable. The detailed pseudocodes for both the small and large component covariance cases are also presented. Three numerical experiments are conducted. All of the results show that the proposed method has high accuracy and it is more efficient than the plain Monte Carlo integration approach in the small component covariance case. |
doi_str_mv | 10.1109/TAES.2020.3035426 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAES_2020_3035426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9247302</ieee_id><sourcerecordid>2512222082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-4025dedc5803263bb3c6758aba79fe2956824a5facb06760079dd569d13fc0fc3</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcPIN4EvO48SZq0uZzDTWFT0e06pG0qGV0zkxbmI_kcvpgpE8_N4Rz-_xz-D6FrAhNCQN6tpw_vEwoUJgwYT6k4QSPCeZZIAewUjQBInkjKyTm6CGEbxzRP2QjZ6X7v3cHudGfbD_zqQme8dR7PvN79fPvkTTt87_q2CriO62fXNrY12uO5bQbpYPKuaMwu4E0YxoXuQ7C6xSt76Hpv8MpVpgmX6KzWTTBXf32MNvOH9ewxWb4snmbTZVIyJrokBcorU5U8B0YFKwpWioznutCZrA2VXOQ01bzWZQEiEwCZrCouZEVYXUJdsjG6Pd6NuT57Ezq1db1v40sV49NYkNOoIkdV6V0I3tRq7yME_6UIqIGoGoiqgaj6Ixo9N0ePNcb86yVNMwaU_QLkLXOE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512222082</pqid></control><display><type>article</type><title>Approximating Posterior Cramér-Rao Bounds for Nonlinear Filtering Problems Using Gaussian Mixture Models</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Shuo ; Chen, Defeng ; Fu, Tuo ; Cao, Huawei</creator><creatorcontrib>Zhang, Shuo ; Chen, Defeng ; Fu, Tuo ; Cao, Huawei</creatorcontrib><description>The posterior Cramér-Rao bound (PCRB) is a fundamental tool to assess the accuracy limit of the Bayesian estimation problem. In this article, we propose a novel framework to compute the PCRB for the general nonlinear filtering problem with additive white Gaussian noise. It uses the Gaussian mixture model to represent and propagate the uncertainty contained in the state vector and uses the Gauss-Hermite quadrature rule to compute mathematical expectations of vector-valued nonlinear functions of the state variable. The detailed pseudocodes for both the small and large component covariance cases are also presented. Three numerical experiments are conducted. All of the results show that the proposed method has high accuracy and it is more efficient than the plain Monte Carlo integration approach in the small component covariance case.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2020.3035426</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; AWGN ; Codes ; Computational modeling ; Covariance ; Filtration ; Gaussian mixture model ; Gaussian mixture model (GMM) ; Mathematical analysis ; Monte Carlo methods ; nonlinear state estimation ; posterior Cramér–Rao bound (PCRB) ; Probabilistic models ; Quadratures ; Random noise ; State vectors ; Target tracking ; Uncertainty</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2021-04, Vol.57 (2), p.984-1001</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-4025dedc5803263bb3c6758aba79fe2956824a5facb06760079dd569d13fc0fc3</citedby><cites>FETCH-LOGICAL-c336t-4025dedc5803263bb3c6758aba79fe2956824a5facb06760079dd569d13fc0fc3</cites><orcidid>0000-0002-0138-2149 ; 0000-0001-8826-3048 ; 0000-0002-9015-549X ; 0000-0003-2192-7115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9247302$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Zhang, Shuo</creatorcontrib><creatorcontrib>Chen, Defeng</creatorcontrib><creatorcontrib>Fu, Tuo</creatorcontrib><creatorcontrib>Cao, Huawei</creatorcontrib><title>Approximating Posterior Cramér-Rao Bounds for Nonlinear Filtering Problems Using Gaussian Mixture Models</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>The posterior Cramér-Rao bound (PCRB) is a fundamental tool to assess the accuracy limit of the Bayesian estimation problem. In this article, we propose a novel framework to compute the PCRB for the general nonlinear filtering problem with additive white Gaussian noise. It uses the Gaussian mixture model to represent and propagate the uncertainty contained in the state vector and uses the Gauss-Hermite quadrature rule to compute mathematical expectations of vector-valued nonlinear functions of the state variable. The detailed pseudocodes for both the small and large component covariance cases are also presented. Three numerical experiments are conducted. All of the results show that the proposed method has high accuracy and it is more efficient than the plain Monte Carlo integration approach in the small component covariance case.</description><subject>Accuracy</subject><subject>AWGN</subject><subject>Codes</subject><subject>Computational modeling</subject><subject>Covariance</subject><subject>Filtration</subject><subject>Gaussian mixture model</subject><subject>Gaussian mixture model (GMM)</subject><subject>Mathematical analysis</subject><subject>Monte Carlo methods</subject><subject>nonlinear state estimation</subject><subject>posterior Cramér–Rao bound (PCRB)</subject><subject>Probabilistic models</subject><subject>Quadratures</subject><subject>Random noise</subject><subject>State vectors</subject><subject>Target tracking</subject><subject>Uncertainty</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kNFKwzAUhoMoOKcPIN4EvO48SZq0uZzDTWFT0e06pG0qGV0zkxbmI_kcvpgpE8_N4Rz-_xz-D6FrAhNCQN6tpw_vEwoUJgwYT6k4QSPCeZZIAewUjQBInkjKyTm6CGEbxzRP2QjZ6X7v3cHudGfbD_zqQme8dR7PvN79fPvkTTt87_q2CriO62fXNrY12uO5bQbpYPKuaMwu4E0YxoXuQ7C6xSt76Hpv8MpVpgmX6KzWTTBXf32MNvOH9ewxWb4snmbTZVIyJrokBcorU5U8B0YFKwpWioznutCZrA2VXOQ01bzWZQEiEwCZrCouZEVYXUJdsjG6Pd6NuT57Ezq1db1v40sV49NYkNOoIkdV6V0I3tRq7yME_6UIqIGoGoiqgaj6Ixo9N0ePNcb86yVNMwaU_QLkLXOE</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Zhang, Shuo</creator><creator>Chen, Defeng</creator><creator>Fu, Tuo</creator><creator>Cao, Huawei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0138-2149</orcidid><orcidid>https://orcid.org/0000-0001-8826-3048</orcidid><orcidid>https://orcid.org/0000-0002-9015-549X</orcidid><orcidid>https://orcid.org/0000-0003-2192-7115</orcidid></search><sort><creationdate>20210401</creationdate><title>Approximating Posterior Cramér-Rao Bounds for Nonlinear Filtering Problems Using Gaussian Mixture Models</title><author>Zhang, Shuo ; Chen, Defeng ; Fu, Tuo ; Cao, Huawei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-4025dedc5803263bb3c6758aba79fe2956824a5facb06760079dd569d13fc0fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>AWGN</topic><topic>Codes</topic><topic>Computational modeling</topic><topic>Covariance</topic><topic>Filtration</topic><topic>Gaussian mixture model</topic><topic>Gaussian mixture model (GMM)</topic><topic>Mathematical analysis</topic><topic>Monte Carlo methods</topic><topic>nonlinear state estimation</topic><topic>posterior Cramér–Rao bound (PCRB)</topic><topic>Probabilistic models</topic><topic>Quadratures</topic><topic>Random noise</topic><topic>State vectors</topic><topic>Target tracking</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shuo</creatorcontrib><creatorcontrib>Chen, Defeng</creatorcontrib><creatorcontrib>Fu, Tuo</creatorcontrib><creatorcontrib>Cao, Huawei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shuo</au><au>Chen, Defeng</au><au>Fu, Tuo</au><au>Cao, Huawei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximating Posterior Cramér-Rao Bounds for Nonlinear Filtering Problems Using Gaussian Mixture Models</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>57</volume><issue>2</issue><spage>984</spage><epage>1001</epage><pages>984-1001</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>The posterior Cramér-Rao bound (PCRB) is a fundamental tool to assess the accuracy limit of the Bayesian estimation problem. In this article, we propose a novel framework to compute the PCRB for the general nonlinear filtering problem with additive white Gaussian noise. It uses the Gaussian mixture model to represent and propagate the uncertainty contained in the state vector and uses the Gauss-Hermite quadrature rule to compute mathematical expectations of vector-valued nonlinear functions of the state variable. The detailed pseudocodes for both the small and large component covariance cases are also presented. Three numerical experiments are conducted. All of the results show that the proposed method has high accuracy and it is more efficient than the plain Monte Carlo integration approach in the small component covariance case.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2020.3035426</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-0138-2149</orcidid><orcidid>https://orcid.org/0000-0001-8826-3048</orcidid><orcidid>https://orcid.org/0000-0002-9015-549X</orcidid><orcidid>https://orcid.org/0000-0003-2192-7115</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2021-04, Vol.57 (2), p.984-1001 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAES_2020_3035426 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy AWGN Codes Computational modeling Covariance Filtration Gaussian mixture model Gaussian mixture model (GMM) Mathematical analysis Monte Carlo methods nonlinear state estimation posterior Cramér–Rao bound (PCRB) Probabilistic models Quadratures Random noise State vectors Target tracking Uncertainty |
title | Approximating Posterior Cramér-Rao Bounds for Nonlinear Filtering Problems Using Gaussian Mixture Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T11%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximating%20Posterior%20Cram%C3%A9r-Rao%20Bounds%20for%20Nonlinear%20Filtering%20Problems%20Using%20Gaussian%20Mixture%20Models&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Zhang,%20Shuo&rft.date=2021-04-01&rft.volume=57&rft.issue=2&rft.spage=984&rft.epage=1001&rft.pages=984-1001&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2020.3035426&rft_dat=%3Cproquest_cross%3E2512222082%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512222082&rft_id=info:pmid/&rft_ieee_id=9247302&rfr_iscdi=true |