Machine Learning Methods for Spacecraft Telemetry Mining

Spacecrafts are critical systems that have to survive space environment effects. Due to its complexity, these types of systems are designed in a way to mitigate errors and maneuver the critical situations. Spacecraft delivers to the ground operator an abundance data related to system status telemetr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2019-08, Vol.55 (4), p.1816-1827
Hauptverfasser: Ibrahim, Sara K., Ahmed, Ayman, Zeidan, M. Amal Eldin, Ziedan, Ibrahim E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1827
container_issue 4
container_start_page 1816
container_title IEEE transactions on aerospace and electronic systems
container_volume 55
creator Ibrahim, Sara K.
Ahmed, Ayman
Zeidan, M. Amal Eldin
Ziedan, Ibrahim E.
description Spacecrafts are critical systems that have to survive space environment effects. Due to its complexity, these types of systems are designed in a way to mitigate errors and maneuver the critical situations. Spacecraft delivers to the ground operator an abundance data related to system status telemetry; the telemetry parameters are monitored to indicate spacecraft performance. Recently, researchers proposed using Machine Learning (ML)/Telemetry Mining (TM) techniques for telemetry parameters forecasting. Telemetry processing facilitates the data visualization to enable operators understanding the behavior of the satellite in order to reduce failure risks. In this paper, we introduce a comparison between the different machine learning techniques that can be applied for low earth orbit satellite telemetry mining. The techniques are evaluated on the bases of calculating the prediction accuracy using mean error and correlation estimation. We used telemetry data received from Egyptsat-1 satellite including parameters such as battery temperature, power bus voltage and load current. The research summarizes the performance of processing telemetry data using autoregressive integrated moving average (ARIMA), Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), Long Short-Term Memory Recurrent Neural Network (LSTM RNN), Deep Long Short-Term Memory Recurrent Neural Networks (DLSTM RNNs), Gated Recurrent Unit Recurrent Neural Network (GRU RNN), and Deep Gated Recurrent Unit Recurrent Neural Networks (DGRU RNNs).
doi_str_mv 10.1109/TAES.2018.2876586
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAES_2018_2876586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8496807</ieee_id><sourcerecordid>2270204669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e6ea949024ae438e31fdbb64798be7a1e9a8f4230f92c629a482b83dae9cb6bd3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRMFZ_gHgJeE7dr2x2jqXUKrR4aDwvm82sTWmTupse-u9NaPE0vMzzzsBDyDOjU8YovJWzxWbKKdNTrguVa3VDEpbnRQaKiluS0GGVAc_ZPXmIcTdEqaVIiF5bt21aTFdoQ9u0P-ka-21Xx9R3Id0crUMXrO_TEvd4wD6c03Uzco_kztt9xKfrnJDv90U5_8hWX8vP-WyVOQ6iz1ChBQmUS4tSaBTM11WlZAG6wsIyBKu95IJ64E5xsFLzSovaIrhKVbWYkNfL3WPofk8Ye7PrTqEdXhrOC8qpVAoGil0oF7oYA3pzDM3BhrNh1IyCzCjIjILMVdDQebl0GkT857UEpWkh_gD34GEO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2270204669</pqid></control><display><type>article</type><title>Machine Learning Methods for Spacecraft Telemetry Mining</title><source>IEEE Electronic Library (IEL)</source><creator>Ibrahim, Sara K. ; Ahmed, Ayman ; Zeidan, M. Amal Eldin ; Ziedan, Ibrahim E.</creator><creatorcontrib>Ibrahim, Sara K. ; Ahmed, Ayman ; Zeidan, M. Amal Eldin ; Ziedan, Ibrahim E.</creatorcontrib><description>Spacecrafts are critical systems that have to survive space environment effects. Due to its complexity, these types of systems are designed in a way to mitigate errors and maneuver the critical situations. Spacecraft delivers to the ground operator an abundance data related to system status telemetry; the telemetry parameters are monitored to indicate spacecraft performance. Recently, researchers proposed using Machine Learning (ML)/Telemetry Mining (TM) techniques for telemetry parameters forecasting. Telemetry processing facilitates the data visualization to enable operators understanding the behavior of the satellite in order to reduce failure risks. In this paper, we introduce a comparison between the different machine learning techniques that can be applied for low earth orbit satellite telemetry mining. The techniques are evaluated on the bases of calculating the prediction accuracy using mean error and correlation estimation. We used telemetry data received from Egyptsat-1 satellite including parameters such as battery temperature, power bus voltage and load current. The research summarizes the performance of processing telemetry data using autoregressive integrated moving average (ARIMA), Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), Long Short-Term Memory Recurrent Neural Network (LSTM RNN), Deep Long Short-Term Memory Recurrent Neural Networks (DLSTM RNNs), Gated Recurrent Unit Recurrent Neural Network (GRU RNN), and Deep Gated Recurrent Unit Recurrent Neural Networks (DGRU RNNs).</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2018.2876586</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerospace environments ; Artificial intelligence ; Autoregressive models ; Batteries ; Data buses ; Data mining ; deep learning ; Environmental effects ; Low earth orbits ; Machine learning ; Mathematical analysis ; Monitoring ; Multilayer perceptrons ; Neural networks ; Parameters ; Recurrent neural networks ; satellite performance analysis ; Satellites ; Scientific visualization ; Space vehicles ; Spacecraft performance ; Telemetry ; telemetry mining</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2019-08, Vol.55 (4), p.1816-1827</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e6ea949024ae438e31fdbb64798be7a1e9a8f4230f92c629a482b83dae9cb6bd3</citedby><cites>FETCH-LOGICAL-c293t-e6ea949024ae438e31fdbb64798be7a1e9a8f4230f92c629a482b83dae9cb6bd3</cites><orcidid>0000-0002-9508-7449 ; 0000-0002-9320-3661</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8496807$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8496807$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ibrahim, Sara K.</creatorcontrib><creatorcontrib>Ahmed, Ayman</creatorcontrib><creatorcontrib>Zeidan, M. Amal Eldin</creatorcontrib><creatorcontrib>Ziedan, Ibrahim E.</creatorcontrib><title>Machine Learning Methods for Spacecraft Telemetry Mining</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>Spacecrafts are critical systems that have to survive space environment effects. Due to its complexity, these types of systems are designed in a way to mitigate errors and maneuver the critical situations. Spacecraft delivers to the ground operator an abundance data related to system status telemetry; the telemetry parameters are monitored to indicate spacecraft performance. Recently, researchers proposed using Machine Learning (ML)/Telemetry Mining (TM) techniques for telemetry parameters forecasting. Telemetry processing facilitates the data visualization to enable operators understanding the behavior of the satellite in order to reduce failure risks. In this paper, we introduce a comparison between the different machine learning techniques that can be applied for low earth orbit satellite telemetry mining. The techniques are evaluated on the bases of calculating the prediction accuracy using mean error and correlation estimation. We used telemetry data received from Egyptsat-1 satellite including parameters such as battery temperature, power bus voltage and load current. The research summarizes the performance of processing telemetry data using autoregressive integrated moving average (ARIMA), Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), Long Short-Term Memory Recurrent Neural Network (LSTM RNN), Deep Long Short-Term Memory Recurrent Neural Networks (DLSTM RNNs), Gated Recurrent Unit Recurrent Neural Network (GRU RNN), and Deep Gated Recurrent Unit Recurrent Neural Networks (DGRU RNNs).</description><subject>Aerospace environments</subject><subject>Artificial intelligence</subject><subject>Autoregressive models</subject><subject>Batteries</subject><subject>Data buses</subject><subject>Data mining</subject><subject>deep learning</subject><subject>Environmental effects</subject><subject>Low earth orbits</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Monitoring</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Recurrent neural networks</subject><subject>satellite performance analysis</subject><subject>Satellites</subject><subject>Scientific visualization</subject><subject>Space vehicles</subject><subject>Spacecraft performance</subject><subject>Telemetry</subject><subject>telemetry mining</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRMFZ_gHgJeE7dr2x2jqXUKrR4aDwvm82sTWmTupse-u9NaPE0vMzzzsBDyDOjU8YovJWzxWbKKdNTrguVa3VDEpbnRQaKiluS0GGVAc_ZPXmIcTdEqaVIiF5bt21aTFdoQ9u0P-ka-21Xx9R3Id0crUMXrO_TEvd4wD6c03Uzco_kztt9xKfrnJDv90U5_8hWX8vP-WyVOQ6iz1ChBQmUS4tSaBTM11WlZAG6wsIyBKu95IJ64E5xsFLzSovaIrhKVbWYkNfL3WPofk8Ye7PrTqEdXhrOC8qpVAoGil0oF7oYA3pzDM3BhrNh1IyCzCjIjILMVdDQebl0GkT857UEpWkh_gD34GEO</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Ibrahim, Sara K.</creator><creator>Ahmed, Ayman</creator><creator>Zeidan, M. Amal Eldin</creator><creator>Ziedan, Ibrahim E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9508-7449</orcidid><orcidid>https://orcid.org/0000-0002-9320-3661</orcidid></search><sort><creationdate>20190801</creationdate><title>Machine Learning Methods for Spacecraft Telemetry Mining</title><author>Ibrahim, Sara K. ; Ahmed, Ayman ; Zeidan, M. Amal Eldin ; Ziedan, Ibrahim E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e6ea949024ae438e31fdbb64798be7a1e9a8f4230f92c629a482b83dae9cb6bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerospace environments</topic><topic>Artificial intelligence</topic><topic>Autoregressive models</topic><topic>Batteries</topic><topic>Data buses</topic><topic>Data mining</topic><topic>deep learning</topic><topic>Environmental effects</topic><topic>Low earth orbits</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Monitoring</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Recurrent neural networks</topic><topic>satellite performance analysis</topic><topic>Satellites</topic><topic>Scientific visualization</topic><topic>Space vehicles</topic><topic>Spacecraft performance</topic><topic>Telemetry</topic><topic>telemetry mining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibrahim, Sara K.</creatorcontrib><creatorcontrib>Ahmed, Ayman</creatorcontrib><creatorcontrib>Zeidan, M. Amal Eldin</creatorcontrib><creatorcontrib>Ziedan, Ibrahim E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ibrahim, Sara K.</au><au>Ahmed, Ayman</au><au>Zeidan, M. Amal Eldin</au><au>Ziedan, Ibrahim E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Methods for Spacecraft Telemetry Mining</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>55</volume><issue>4</issue><spage>1816</spage><epage>1827</epage><pages>1816-1827</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>Spacecrafts are critical systems that have to survive space environment effects. Due to its complexity, these types of systems are designed in a way to mitigate errors and maneuver the critical situations. Spacecraft delivers to the ground operator an abundance data related to system status telemetry; the telemetry parameters are monitored to indicate spacecraft performance. Recently, researchers proposed using Machine Learning (ML)/Telemetry Mining (TM) techniques for telemetry parameters forecasting. Telemetry processing facilitates the data visualization to enable operators understanding the behavior of the satellite in order to reduce failure risks. In this paper, we introduce a comparison between the different machine learning techniques that can be applied for low earth orbit satellite telemetry mining. The techniques are evaluated on the bases of calculating the prediction accuracy using mean error and correlation estimation. We used telemetry data received from Egyptsat-1 satellite including parameters such as battery temperature, power bus voltage and load current. The research summarizes the performance of processing telemetry data using autoregressive integrated moving average (ARIMA), Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), Long Short-Term Memory Recurrent Neural Network (LSTM RNN), Deep Long Short-Term Memory Recurrent Neural Networks (DLSTM RNNs), Gated Recurrent Unit Recurrent Neural Network (GRU RNN), and Deep Gated Recurrent Unit Recurrent Neural Networks (DGRU RNNs).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2018.2876586</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9508-7449</orcidid><orcidid>https://orcid.org/0000-0002-9320-3661</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2019-08, Vol.55 (4), p.1816-1827
issn 0018-9251
1557-9603
language eng
recordid cdi_crossref_primary_10_1109_TAES_2018_2876586
source IEEE Electronic Library (IEL)
subjects Aerospace environments
Artificial intelligence
Autoregressive models
Batteries
Data buses
Data mining
deep learning
Environmental effects
Low earth orbits
Machine learning
Mathematical analysis
Monitoring
Multilayer perceptrons
Neural networks
Parameters
Recurrent neural networks
satellite performance analysis
Satellites
Scientific visualization
Space vehicles
Spacecraft performance
Telemetry
telemetry mining
title Machine Learning Methods for Spacecraft Telemetry Mining
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A13%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Methods%20for%20Spacecraft%20Telemetry%20Mining&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Ibrahim,%20Sara%20K.&rft.date=2019-08-01&rft.volume=55&rft.issue=4&rft.spage=1816&rft.epage=1827&rft.pages=1816-1827&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2018.2876586&rft_dat=%3Cproquest_RIE%3E2270204669%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2270204669&rft_id=info:pmid/&rft_ieee_id=8496807&rfr_iscdi=true