Machine Learning Methods for Spacecraft Telemetry Mining
Spacecrafts are critical systems that have to survive space environment effects. Due to its complexity, these types of systems are designed in a way to mitigate errors and maneuver the critical situations. Spacecraft delivers to the ground operator an abundance data related to system status telemetr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2019-08, Vol.55 (4), p.1816-1827 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1827 |
---|---|
container_issue | 4 |
container_start_page | 1816 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 55 |
creator | Ibrahim, Sara K. Ahmed, Ayman Zeidan, M. Amal Eldin Ziedan, Ibrahim E. |
description | Spacecrafts are critical systems that have to survive space environment effects. Due to its complexity, these types of systems are designed in a way to mitigate errors and maneuver the critical situations. Spacecraft delivers to the ground operator an abundance data related to system status telemetry; the telemetry parameters are monitored to indicate spacecraft performance. Recently, researchers proposed using Machine Learning (ML)/Telemetry Mining (TM) techniques for telemetry parameters forecasting. Telemetry processing facilitates the data visualization to enable operators understanding the behavior of the satellite in order to reduce failure risks.
In this paper, we introduce a comparison between the different machine learning techniques that can be applied for low earth orbit satellite telemetry mining. The techniques are evaluated on the bases of calculating the prediction accuracy using mean error and correlation estimation. We used telemetry data received from Egyptsat-1 satellite including parameters such as battery temperature, power bus voltage and load current. The research summarizes the performance of processing telemetry data using autoregressive integrated moving average (ARIMA), Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), Long Short-Term Memory Recurrent Neural Network (LSTM RNN), Deep Long Short-Term Memory Recurrent Neural Networks (DLSTM RNNs), Gated Recurrent Unit Recurrent Neural Network (GRU RNN), and Deep Gated Recurrent Unit Recurrent Neural Networks (DGRU RNNs). |
doi_str_mv | 10.1109/TAES.2018.2876586 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAES_2018_2876586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8496807</ieee_id><sourcerecordid>2270204669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e6ea949024ae438e31fdbb64798be7a1e9a8f4230f92c629a482b83dae9cb6bd3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRMFZ_gHgJeE7dr2x2jqXUKrR4aDwvm82sTWmTupse-u9NaPE0vMzzzsBDyDOjU8YovJWzxWbKKdNTrguVa3VDEpbnRQaKiluS0GGVAc_ZPXmIcTdEqaVIiF5bt21aTFdoQ9u0P-ka-21Xx9R3Id0crUMXrO_TEvd4wD6c03Uzco_kztt9xKfrnJDv90U5_8hWX8vP-WyVOQ6iz1ChBQmUS4tSaBTM11WlZAG6wsIyBKu95IJ64E5xsFLzSovaIrhKVbWYkNfL3WPofk8Ye7PrTqEdXhrOC8qpVAoGil0oF7oYA3pzDM3BhrNh1IyCzCjIjILMVdDQebl0GkT857UEpWkh_gD34GEO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2270204669</pqid></control><display><type>article</type><title>Machine Learning Methods for Spacecraft Telemetry Mining</title><source>IEEE Electronic Library (IEL)</source><creator>Ibrahim, Sara K. ; Ahmed, Ayman ; Zeidan, M. Amal Eldin ; Ziedan, Ibrahim E.</creator><creatorcontrib>Ibrahim, Sara K. ; Ahmed, Ayman ; Zeidan, M. Amal Eldin ; Ziedan, Ibrahim E.</creatorcontrib><description>Spacecrafts are critical systems that have to survive space environment effects. Due to its complexity, these types of systems are designed in a way to mitigate errors and maneuver the critical situations. Spacecraft delivers to the ground operator an abundance data related to system status telemetry; the telemetry parameters are monitored to indicate spacecraft performance. Recently, researchers proposed using Machine Learning (ML)/Telemetry Mining (TM) techniques for telemetry parameters forecasting. Telemetry processing facilitates the data visualization to enable operators understanding the behavior of the satellite in order to reduce failure risks.
In this paper, we introduce a comparison between the different machine learning techniques that can be applied for low earth orbit satellite telemetry mining. The techniques are evaluated on the bases of calculating the prediction accuracy using mean error and correlation estimation. We used telemetry data received from Egyptsat-1 satellite including parameters such as battery temperature, power bus voltage and load current. The research summarizes the performance of processing telemetry data using autoregressive integrated moving average (ARIMA), Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), Long Short-Term Memory Recurrent Neural Network (LSTM RNN), Deep Long Short-Term Memory Recurrent Neural Networks (DLSTM RNNs), Gated Recurrent Unit Recurrent Neural Network (GRU RNN), and Deep Gated Recurrent Unit Recurrent Neural Networks (DGRU RNNs).</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2018.2876586</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerospace environments ; Artificial intelligence ; Autoregressive models ; Batteries ; Data buses ; Data mining ; deep learning ; Environmental effects ; Low earth orbits ; Machine learning ; Mathematical analysis ; Monitoring ; Multilayer perceptrons ; Neural networks ; Parameters ; Recurrent neural networks ; satellite performance analysis ; Satellites ; Scientific visualization ; Space vehicles ; Spacecraft performance ; Telemetry ; telemetry mining</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2019-08, Vol.55 (4), p.1816-1827</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e6ea949024ae438e31fdbb64798be7a1e9a8f4230f92c629a482b83dae9cb6bd3</citedby><cites>FETCH-LOGICAL-c293t-e6ea949024ae438e31fdbb64798be7a1e9a8f4230f92c629a482b83dae9cb6bd3</cites><orcidid>0000-0002-9508-7449 ; 0000-0002-9320-3661</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8496807$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8496807$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ibrahim, Sara K.</creatorcontrib><creatorcontrib>Ahmed, Ayman</creatorcontrib><creatorcontrib>Zeidan, M. Amal Eldin</creatorcontrib><creatorcontrib>Ziedan, Ibrahim E.</creatorcontrib><title>Machine Learning Methods for Spacecraft Telemetry Mining</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>Spacecrafts are critical systems that have to survive space environment effects. Due to its complexity, these types of systems are designed in a way to mitigate errors and maneuver the critical situations. Spacecraft delivers to the ground operator an abundance data related to system status telemetry; the telemetry parameters are monitored to indicate spacecraft performance. Recently, researchers proposed using Machine Learning (ML)/Telemetry Mining (TM) techniques for telemetry parameters forecasting. Telemetry processing facilitates the data visualization to enable operators understanding the behavior of the satellite in order to reduce failure risks.
In this paper, we introduce a comparison between the different machine learning techniques that can be applied for low earth orbit satellite telemetry mining. The techniques are evaluated on the bases of calculating the prediction accuracy using mean error and correlation estimation. We used telemetry data received from Egyptsat-1 satellite including parameters such as battery temperature, power bus voltage and load current. The research summarizes the performance of processing telemetry data using autoregressive integrated moving average (ARIMA), Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), Long Short-Term Memory Recurrent Neural Network (LSTM RNN), Deep Long Short-Term Memory Recurrent Neural Networks (DLSTM RNNs), Gated Recurrent Unit Recurrent Neural Network (GRU RNN), and Deep Gated Recurrent Unit Recurrent Neural Networks (DGRU RNNs).</description><subject>Aerospace environments</subject><subject>Artificial intelligence</subject><subject>Autoregressive models</subject><subject>Batteries</subject><subject>Data buses</subject><subject>Data mining</subject><subject>deep learning</subject><subject>Environmental effects</subject><subject>Low earth orbits</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Monitoring</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Recurrent neural networks</subject><subject>satellite performance analysis</subject><subject>Satellites</subject><subject>Scientific visualization</subject><subject>Space vehicles</subject><subject>Spacecraft performance</subject><subject>Telemetry</subject><subject>telemetry mining</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRMFZ_gHgJeE7dr2x2jqXUKrR4aDwvm82sTWmTupse-u9NaPE0vMzzzsBDyDOjU8YovJWzxWbKKdNTrguVa3VDEpbnRQaKiluS0GGVAc_ZPXmIcTdEqaVIiF5bt21aTFdoQ9u0P-ka-21Xx9R3Id0crUMXrO_TEvd4wD6c03Uzco_kztt9xKfrnJDv90U5_8hWX8vP-WyVOQ6iz1ChBQmUS4tSaBTM11WlZAG6wsIyBKu95IJ64E5xsFLzSovaIrhKVbWYkNfL3WPofk8Ye7PrTqEdXhrOC8qpVAoGil0oF7oYA3pzDM3BhrNh1IyCzCjIjILMVdDQebl0GkT857UEpWkh_gD34GEO</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Ibrahim, Sara K.</creator><creator>Ahmed, Ayman</creator><creator>Zeidan, M. Amal Eldin</creator><creator>Ziedan, Ibrahim E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9508-7449</orcidid><orcidid>https://orcid.org/0000-0002-9320-3661</orcidid></search><sort><creationdate>20190801</creationdate><title>Machine Learning Methods for Spacecraft Telemetry Mining</title><author>Ibrahim, Sara K. ; Ahmed, Ayman ; Zeidan, M. Amal Eldin ; Ziedan, Ibrahim E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e6ea949024ae438e31fdbb64798be7a1e9a8f4230f92c629a482b83dae9cb6bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerospace environments</topic><topic>Artificial intelligence</topic><topic>Autoregressive models</topic><topic>Batteries</topic><topic>Data buses</topic><topic>Data mining</topic><topic>deep learning</topic><topic>Environmental effects</topic><topic>Low earth orbits</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Monitoring</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Recurrent neural networks</topic><topic>satellite performance analysis</topic><topic>Satellites</topic><topic>Scientific visualization</topic><topic>Space vehicles</topic><topic>Spacecraft performance</topic><topic>Telemetry</topic><topic>telemetry mining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibrahim, Sara K.</creatorcontrib><creatorcontrib>Ahmed, Ayman</creatorcontrib><creatorcontrib>Zeidan, M. Amal Eldin</creatorcontrib><creatorcontrib>Ziedan, Ibrahim E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ibrahim, Sara K.</au><au>Ahmed, Ayman</au><au>Zeidan, M. Amal Eldin</au><au>Ziedan, Ibrahim E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Methods for Spacecraft Telemetry Mining</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>55</volume><issue>4</issue><spage>1816</spage><epage>1827</epage><pages>1816-1827</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>Spacecrafts are critical systems that have to survive space environment effects. Due to its complexity, these types of systems are designed in a way to mitigate errors and maneuver the critical situations. Spacecraft delivers to the ground operator an abundance data related to system status telemetry; the telemetry parameters are monitored to indicate spacecraft performance. Recently, researchers proposed using Machine Learning (ML)/Telemetry Mining (TM) techniques for telemetry parameters forecasting. Telemetry processing facilitates the data visualization to enable operators understanding the behavior of the satellite in order to reduce failure risks.
In this paper, we introduce a comparison between the different machine learning techniques that can be applied for low earth orbit satellite telemetry mining. The techniques are evaluated on the bases of calculating the prediction accuracy using mean error and correlation estimation. We used telemetry data received from Egyptsat-1 satellite including parameters such as battery temperature, power bus voltage and load current. The research summarizes the performance of processing telemetry data using autoregressive integrated moving average (ARIMA), Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), Long Short-Term Memory Recurrent Neural Network (LSTM RNN), Deep Long Short-Term Memory Recurrent Neural Networks (DLSTM RNNs), Gated Recurrent Unit Recurrent Neural Network (GRU RNN), and Deep Gated Recurrent Unit Recurrent Neural Networks (DGRU RNNs).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2018.2876586</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9508-7449</orcidid><orcidid>https://orcid.org/0000-0002-9320-3661</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2019-08, Vol.55 (4), p.1816-1827 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAES_2018_2876586 |
source | IEEE Electronic Library (IEL) |
subjects | Aerospace environments Artificial intelligence Autoregressive models Batteries Data buses Data mining deep learning Environmental effects Low earth orbits Machine learning Mathematical analysis Monitoring Multilayer perceptrons Neural networks Parameters Recurrent neural networks satellite performance analysis Satellites Scientific visualization Space vehicles Spacecraft performance Telemetry telemetry mining |
title | Machine Learning Methods for Spacecraft Telemetry Mining |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A13%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Methods%20for%20Spacecraft%20Telemetry%20Mining&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Ibrahim,%20Sara%20K.&rft.date=2019-08-01&rft.volume=55&rft.issue=4&rft.spage=1816&rft.epage=1827&rft.pages=1816-1827&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2018.2876586&rft_dat=%3Cproquest_RIE%3E2270204669%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2270204669&rft_id=info:pmid/&rft_ieee_id=8496807&rfr_iscdi=true |