Optimal Collaborative Mapping of Terrestrial Transmitters: Receiver Placement and Performance Characterization

Mapping multiple unknown terrestrial signals of opportunity (SOP) transmitters via multiple collaborating receivers is considered. The receivers are assumed to have knowledge about their own states, make pseudorange observations on multiple unknown SOPs, and fuse these pseudoranges through a central...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2018-04, Vol.54 (2), p.992-1007
Hauptverfasser: Morales, Joshua J., Kassas, Zaher M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1007
container_issue 2
container_start_page 992
container_title IEEE transactions on aerospace and electronic systems
container_volume 54
creator Morales, Joshua J.
Kassas, Zaher M.
description Mapping multiple unknown terrestrial signals of opportunity (SOP) transmitters via multiple collaborating receivers is considered. The receivers are assumed to have knowledge about their own states, make pseudorange observations on multiple unknown SOPs, and fuse these pseudoranges through a central estimator. Two problems are considered. The first problem assumes multiple receivers with random initial states to pre-exist in the environment. The question of where to optimally place an additional receiver so to maximize the quality of the estimate of the SOPs' states is addressed. A novel, computationally efficient optimization criterion that is based on area-maximization is proposed. It is shown that the proposed optimization criterion yields a convex program, the solution of which is comparable to two classical criteria: minimization of the geometric dilution of precision (GDOP) and maximization of the determinant of the inverse of the GDOP matrix. The second problem addresses the optimal mapping performance as a function of time and number of receivers in the environment. It is demonstrated that such optimal performance assessment could be generated off-line without knowledge of the receivers' trajectories or the receivers' estimates of the SOP. Experimental results are presented demonstrating collaborative mapping of an unknown terrestrial SOP emanating from a cellular tower for various receiver trajectories versus the optimal mapping performance.
doi_str_mv 10.1109/TAES.2017.2773238
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAES_2017_2773238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8106762</ieee_id><sourcerecordid>2025110665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-35d630eef01c3b78de19961eb2eb965165ac99e9ffefe5854f0ce3d8d93f7bce3</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKd_gPgS8LkzaZa08W2U-QMmG1qfQ5petKNNa9IJ-tebseHT3cHnvnd8ELqmZEYpkXflYvk2SwnNZmmWsZTlJ2hCOc8SKQg7RRNCaJ7IlNNzdBHCNo7zfM4myK2Hsel0i4u-bXXVez0234Bf9DA07gP3FpfgPYTRNxEqvXaha8YRfLjHr2Agwh5vWm2gAzdi7Wq8AW9732lnABef2msT8eY3BvfuEp1Z3Qa4OtYpen9YlsVTslo_PheLVWIYE2PCeC0YAbCEGlZleQ1USkGhSqGSglPBtZESpLVgged8bokBVue1ZDarYjtFt4fcwfdfu_i-2vY77-JJlZJogRIheKTogTK-D8GDVYOPMvyPokTttaq9VrXXqo5a487NYacBgH8-j4GZSNkfDRl2iA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025110665</pqid></control><display><type>article</type><title>Optimal Collaborative Mapping of Terrestrial Transmitters: Receiver Placement and Performance Characterization</title><source>IEEE Xplore</source><creator>Morales, Joshua J. ; Kassas, Zaher M.</creator><creatorcontrib>Morales, Joshua J. ; Kassas, Zaher M.</creatorcontrib><description>Mapping multiple unknown terrestrial signals of opportunity (SOP) transmitters via multiple collaborating receivers is considered. The receivers are assumed to have knowledge about their own states, make pseudorange observations on multiple unknown SOPs, and fuse these pseudoranges through a central estimator. Two problems are considered. The first problem assumes multiple receivers with random initial states to pre-exist in the environment. The question of where to optimally place an additional receiver so to maximize the quality of the estimate of the SOPs' states is addressed. A novel, computationally efficient optimization criterion that is based on area-maximization is proposed. It is shown that the proposed optimization criterion yields a convex program, the solution of which is comparable to two classical criteria: minimization of the geometric dilution of precision (GDOP) and maximization of the determinant of the inverse of the GDOP matrix. The second problem addresses the optimal mapping performance as a function of time and number of receivers in the environment. It is demonstrated that such optimal performance assessment could be generated off-line without knowledge of the receivers' trajectories or the receivers' estimates of the SOP. Experimental results are presented demonstrating collaborative mapping of an unknown terrestrial SOP emanating from a cellular tower for various receiver trajectories versus the optimal mapping performance.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2017.2773238</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Centralized estimator ; Collaboration ; collaborative mapping ; Criteria ; Dilution ; dilution of precision (DOP) ; emitter localization ; Geometric dilution of precision ; geometric dilution of precision (GDOP) ; Global navigation satellite system ; global navigation satellite system (GNSS) ; GPS ; Mapping ; Maximization ; Minimization ; navigation ; optimal sensor placement ; Optimization ; Performance assessment ; Receivers ; signals of opportunity ; source localization ; terrestrial transmitter mapping ; Trajectory analysis ; Transmitters ; Uncertainty</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2018-04, Vol.54 (2), p.992-1007</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-35d630eef01c3b78de19961eb2eb965165ac99e9ffefe5854f0ce3d8d93f7bce3</citedby><cites>FETCH-LOGICAL-c336t-35d630eef01c3b78de19961eb2eb965165ac99e9ffefe5854f0ce3d8d93f7bce3</cites><orcidid>0000-0002-4388-6142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8106762$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8106762$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Morales, Joshua J.</creatorcontrib><creatorcontrib>Kassas, Zaher M.</creatorcontrib><title>Optimal Collaborative Mapping of Terrestrial Transmitters: Receiver Placement and Performance Characterization</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>Mapping multiple unknown terrestrial signals of opportunity (SOP) transmitters via multiple collaborating receivers is considered. The receivers are assumed to have knowledge about their own states, make pseudorange observations on multiple unknown SOPs, and fuse these pseudoranges through a central estimator. Two problems are considered. The first problem assumes multiple receivers with random initial states to pre-exist in the environment. The question of where to optimally place an additional receiver so to maximize the quality of the estimate of the SOPs' states is addressed. A novel, computationally efficient optimization criterion that is based on area-maximization is proposed. It is shown that the proposed optimization criterion yields a convex program, the solution of which is comparable to two classical criteria: minimization of the geometric dilution of precision (GDOP) and maximization of the determinant of the inverse of the GDOP matrix. The second problem addresses the optimal mapping performance as a function of time and number of receivers in the environment. It is demonstrated that such optimal performance assessment could be generated off-line without knowledge of the receivers' trajectories or the receivers' estimates of the SOP. Experimental results are presented demonstrating collaborative mapping of an unknown terrestrial SOP emanating from a cellular tower for various receiver trajectories versus the optimal mapping performance.</description><subject>Centralized estimator</subject><subject>Collaboration</subject><subject>collaborative mapping</subject><subject>Criteria</subject><subject>Dilution</subject><subject>dilution of precision (DOP)</subject><subject>emitter localization</subject><subject>Geometric dilution of precision</subject><subject>geometric dilution of precision (GDOP)</subject><subject>Global navigation satellite system</subject><subject>global navigation satellite system (GNSS)</subject><subject>GPS</subject><subject>Mapping</subject><subject>Maximization</subject><subject>Minimization</subject><subject>navigation</subject><subject>optimal sensor placement</subject><subject>Optimization</subject><subject>Performance assessment</subject><subject>Receivers</subject><subject>signals of opportunity</subject><subject>source localization</subject><subject>terrestrial transmitter mapping</subject><subject>Trajectory analysis</subject><subject>Transmitters</subject><subject>Uncertainty</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoOKd_gPgS8LkzaZa08W2U-QMmG1qfQ5petKNNa9IJ-tebseHT3cHnvnd8ELqmZEYpkXflYvk2SwnNZmmWsZTlJ2hCOc8SKQg7RRNCaJ7IlNNzdBHCNo7zfM4myK2Hsel0i4u-bXXVez0234Bf9DA07gP3FpfgPYTRNxEqvXaha8YRfLjHr2Agwh5vWm2gAzdi7Wq8AW9732lnABef2msT8eY3BvfuEp1Z3Qa4OtYpen9YlsVTslo_PheLVWIYE2PCeC0YAbCEGlZleQ1USkGhSqGSglPBtZESpLVgged8bokBVue1ZDarYjtFt4fcwfdfu_i-2vY77-JJlZJogRIheKTogTK-D8GDVYOPMvyPokTttaq9VrXXqo5a487NYacBgH8-j4GZSNkfDRl2iA</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Morales, Joshua J.</creator><creator>Kassas, Zaher M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4388-6142</orcidid></search><sort><creationdate>20180401</creationdate><title>Optimal Collaborative Mapping of Terrestrial Transmitters: Receiver Placement and Performance Characterization</title><author>Morales, Joshua J. ; Kassas, Zaher M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-35d630eef01c3b78de19961eb2eb965165ac99e9ffefe5854f0ce3d8d93f7bce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Centralized estimator</topic><topic>Collaboration</topic><topic>collaborative mapping</topic><topic>Criteria</topic><topic>Dilution</topic><topic>dilution of precision (DOP)</topic><topic>emitter localization</topic><topic>Geometric dilution of precision</topic><topic>geometric dilution of precision (GDOP)</topic><topic>Global navigation satellite system</topic><topic>global navigation satellite system (GNSS)</topic><topic>GPS</topic><topic>Mapping</topic><topic>Maximization</topic><topic>Minimization</topic><topic>navigation</topic><topic>optimal sensor placement</topic><topic>Optimization</topic><topic>Performance assessment</topic><topic>Receivers</topic><topic>signals of opportunity</topic><topic>source localization</topic><topic>terrestrial transmitter mapping</topic><topic>Trajectory analysis</topic><topic>Transmitters</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morales, Joshua J.</creatorcontrib><creatorcontrib>Kassas, Zaher M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Morales, Joshua J.</au><au>Kassas, Zaher M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Collaborative Mapping of Terrestrial Transmitters: Receiver Placement and Performance Characterization</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>54</volume><issue>2</issue><spage>992</spage><epage>1007</epage><pages>992-1007</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>Mapping multiple unknown terrestrial signals of opportunity (SOP) transmitters via multiple collaborating receivers is considered. The receivers are assumed to have knowledge about their own states, make pseudorange observations on multiple unknown SOPs, and fuse these pseudoranges through a central estimator. Two problems are considered. The first problem assumes multiple receivers with random initial states to pre-exist in the environment. The question of where to optimally place an additional receiver so to maximize the quality of the estimate of the SOPs' states is addressed. A novel, computationally efficient optimization criterion that is based on area-maximization is proposed. It is shown that the proposed optimization criterion yields a convex program, the solution of which is comparable to two classical criteria: minimization of the geometric dilution of precision (GDOP) and maximization of the determinant of the inverse of the GDOP matrix. The second problem addresses the optimal mapping performance as a function of time and number of receivers in the environment. It is demonstrated that such optimal performance assessment could be generated off-line without knowledge of the receivers' trajectories or the receivers' estimates of the SOP. Experimental results are presented demonstrating collaborative mapping of an unknown terrestrial SOP emanating from a cellular tower for various receiver trajectories versus the optimal mapping performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2017.2773238</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4388-6142</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2018-04, Vol.54 (2), p.992-1007
issn 0018-9251
1557-9603
language eng
recordid cdi_crossref_primary_10_1109_TAES_2017_2773238
source IEEE Xplore
subjects Centralized estimator
Collaboration
collaborative mapping
Criteria
Dilution
dilution of precision (DOP)
emitter localization
Geometric dilution of precision
geometric dilution of precision (GDOP)
Global navigation satellite system
global navigation satellite system (GNSS)
GPS
Mapping
Maximization
Minimization
navigation
optimal sensor placement
Optimization
Performance assessment
Receivers
signals of opportunity
source localization
terrestrial transmitter mapping
Trajectory analysis
Transmitters
Uncertainty
title Optimal Collaborative Mapping of Terrestrial Transmitters: Receiver Placement and Performance Characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A48%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Collaborative%20Mapping%20of%20Terrestrial%20Transmitters:%20Receiver%20Placement%20and%20Performance%20Characterization&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Morales,%20Joshua%20J.&rft.date=2018-04-01&rft.volume=54&rft.issue=2&rft.spage=992&rft.epage=1007&rft.pages=992-1007&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2017.2773238&rft_dat=%3Cproquest_RIE%3E2025110665%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2025110665&rft_id=info:pmid/&rft_ieee_id=8106762&rfr_iscdi=true