Optimal Collaborative Mapping of Terrestrial Transmitters: Receiver Placement and Performance Characterization
Mapping multiple unknown terrestrial signals of opportunity (SOP) transmitters via multiple collaborating receivers is considered. The receivers are assumed to have knowledge about their own states, make pseudorange observations on multiple unknown SOPs, and fuse these pseudoranges through a central...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2018-04, Vol.54 (2), p.992-1007 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1007 |
---|---|
container_issue | 2 |
container_start_page | 992 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 54 |
creator | Morales, Joshua J. Kassas, Zaher M. |
description | Mapping multiple unknown terrestrial signals of opportunity (SOP) transmitters via multiple collaborating receivers is considered. The receivers are assumed to have knowledge about their own states, make pseudorange observations on multiple unknown SOPs, and fuse these pseudoranges through a central estimator. Two problems are considered. The first problem assumes multiple receivers with random initial states to pre-exist in the environment. The question of where to optimally place an additional receiver so to maximize the quality of the estimate of the SOPs' states is addressed. A novel, computationally efficient optimization criterion that is based on area-maximization is proposed. It is shown that the proposed optimization criterion yields a convex program, the solution of which is comparable to two classical criteria: minimization of the geometric dilution of precision (GDOP) and maximization of the determinant of the inverse of the GDOP matrix. The second problem addresses the optimal mapping performance as a function of time and number of receivers in the environment. It is demonstrated that such optimal performance assessment could be generated off-line without knowledge of the receivers' trajectories or the receivers' estimates of the SOP. Experimental results are presented demonstrating collaborative mapping of an unknown terrestrial SOP emanating from a cellular tower for various receiver trajectories versus the optimal mapping performance. |
doi_str_mv | 10.1109/TAES.2017.2773238 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAES_2017_2773238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8106762</ieee_id><sourcerecordid>2025110665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-35d630eef01c3b78de19961eb2eb965165ac99e9ffefe5854f0ce3d8d93f7bce3</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKd_gPgS8LkzaZa08W2U-QMmG1qfQ5petKNNa9IJ-tebseHT3cHnvnd8ELqmZEYpkXflYvk2SwnNZmmWsZTlJ2hCOc8SKQg7RRNCaJ7IlNNzdBHCNo7zfM4myK2Hsel0i4u-bXXVez0234Bf9DA07gP3FpfgPYTRNxEqvXaha8YRfLjHr2Agwh5vWm2gAzdi7Wq8AW9732lnABef2msT8eY3BvfuEp1Z3Qa4OtYpen9YlsVTslo_PheLVWIYE2PCeC0YAbCEGlZleQ1USkGhSqGSglPBtZESpLVgged8bokBVue1ZDarYjtFt4fcwfdfu_i-2vY77-JJlZJogRIheKTogTK-D8GDVYOPMvyPokTttaq9VrXXqo5a487NYacBgH8-j4GZSNkfDRl2iA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025110665</pqid></control><display><type>article</type><title>Optimal Collaborative Mapping of Terrestrial Transmitters: Receiver Placement and Performance Characterization</title><source>IEEE Xplore</source><creator>Morales, Joshua J. ; Kassas, Zaher M.</creator><creatorcontrib>Morales, Joshua J. ; Kassas, Zaher M.</creatorcontrib><description>Mapping multiple unknown terrestrial signals of opportunity (SOP) transmitters via multiple collaborating receivers is considered. The receivers are assumed to have knowledge about their own states, make pseudorange observations on multiple unknown SOPs, and fuse these pseudoranges through a central estimator. Two problems are considered. The first problem assumes multiple receivers with random initial states to pre-exist in the environment. The question of where to optimally place an additional receiver so to maximize the quality of the estimate of the SOPs' states is addressed. A novel, computationally efficient optimization criterion that is based on area-maximization is proposed. It is shown that the proposed optimization criterion yields a convex program, the solution of which is comparable to two classical criteria: minimization of the geometric dilution of precision (GDOP) and maximization of the determinant of the inverse of the GDOP matrix. The second problem addresses the optimal mapping performance as a function of time and number of receivers in the environment. It is demonstrated that such optimal performance assessment could be generated off-line without knowledge of the receivers' trajectories or the receivers' estimates of the SOP. Experimental results are presented demonstrating collaborative mapping of an unknown terrestrial SOP emanating from a cellular tower for various receiver trajectories versus the optimal mapping performance.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2017.2773238</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Centralized estimator ; Collaboration ; collaborative mapping ; Criteria ; Dilution ; dilution of precision (DOP) ; emitter localization ; Geometric dilution of precision ; geometric dilution of precision (GDOP) ; Global navigation satellite system ; global navigation satellite system (GNSS) ; GPS ; Mapping ; Maximization ; Minimization ; navigation ; optimal sensor placement ; Optimization ; Performance assessment ; Receivers ; signals of opportunity ; source localization ; terrestrial transmitter mapping ; Trajectory analysis ; Transmitters ; Uncertainty</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2018-04, Vol.54 (2), p.992-1007</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-35d630eef01c3b78de19961eb2eb965165ac99e9ffefe5854f0ce3d8d93f7bce3</citedby><cites>FETCH-LOGICAL-c336t-35d630eef01c3b78de19961eb2eb965165ac99e9ffefe5854f0ce3d8d93f7bce3</cites><orcidid>0000-0002-4388-6142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8106762$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8106762$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Morales, Joshua J.</creatorcontrib><creatorcontrib>Kassas, Zaher M.</creatorcontrib><title>Optimal Collaborative Mapping of Terrestrial Transmitters: Receiver Placement and Performance Characterization</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>Mapping multiple unknown terrestrial signals of opportunity (SOP) transmitters via multiple collaborating receivers is considered. The receivers are assumed to have knowledge about their own states, make pseudorange observations on multiple unknown SOPs, and fuse these pseudoranges through a central estimator. Two problems are considered. The first problem assumes multiple receivers with random initial states to pre-exist in the environment. The question of where to optimally place an additional receiver so to maximize the quality of the estimate of the SOPs' states is addressed. A novel, computationally efficient optimization criterion that is based on area-maximization is proposed. It is shown that the proposed optimization criterion yields a convex program, the solution of which is comparable to two classical criteria: minimization of the geometric dilution of precision (GDOP) and maximization of the determinant of the inverse of the GDOP matrix. The second problem addresses the optimal mapping performance as a function of time and number of receivers in the environment. It is demonstrated that such optimal performance assessment could be generated off-line without knowledge of the receivers' trajectories or the receivers' estimates of the SOP. Experimental results are presented demonstrating collaborative mapping of an unknown terrestrial SOP emanating from a cellular tower for various receiver trajectories versus the optimal mapping performance.</description><subject>Centralized estimator</subject><subject>Collaboration</subject><subject>collaborative mapping</subject><subject>Criteria</subject><subject>Dilution</subject><subject>dilution of precision (DOP)</subject><subject>emitter localization</subject><subject>Geometric dilution of precision</subject><subject>geometric dilution of precision (GDOP)</subject><subject>Global navigation satellite system</subject><subject>global navigation satellite system (GNSS)</subject><subject>GPS</subject><subject>Mapping</subject><subject>Maximization</subject><subject>Minimization</subject><subject>navigation</subject><subject>optimal sensor placement</subject><subject>Optimization</subject><subject>Performance assessment</subject><subject>Receivers</subject><subject>signals of opportunity</subject><subject>source localization</subject><subject>terrestrial transmitter mapping</subject><subject>Trajectory analysis</subject><subject>Transmitters</subject><subject>Uncertainty</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoOKd_gPgS8LkzaZa08W2U-QMmG1qfQ5petKNNa9IJ-tebseHT3cHnvnd8ELqmZEYpkXflYvk2SwnNZmmWsZTlJ2hCOc8SKQg7RRNCaJ7IlNNzdBHCNo7zfM4myK2Hsel0i4u-bXXVez0234Bf9DA07gP3FpfgPYTRNxEqvXaha8YRfLjHr2Agwh5vWm2gAzdi7Wq8AW9732lnABef2msT8eY3BvfuEp1Z3Qa4OtYpen9YlsVTslo_PheLVWIYE2PCeC0YAbCEGlZleQ1USkGhSqGSglPBtZESpLVgged8bokBVue1ZDarYjtFt4fcwfdfu_i-2vY77-JJlZJogRIheKTogTK-D8GDVYOPMvyPokTttaq9VrXXqo5a487NYacBgH8-j4GZSNkfDRl2iA</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Morales, Joshua J.</creator><creator>Kassas, Zaher M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4388-6142</orcidid></search><sort><creationdate>20180401</creationdate><title>Optimal Collaborative Mapping of Terrestrial Transmitters: Receiver Placement and Performance Characterization</title><author>Morales, Joshua J. ; Kassas, Zaher M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-35d630eef01c3b78de19961eb2eb965165ac99e9ffefe5854f0ce3d8d93f7bce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Centralized estimator</topic><topic>Collaboration</topic><topic>collaborative mapping</topic><topic>Criteria</topic><topic>Dilution</topic><topic>dilution of precision (DOP)</topic><topic>emitter localization</topic><topic>Geometric dilution of precision</topic><topic>geometric dilution of precision (GDOP)</topic><topic>Global navigation satellite system</topic><topic>global navigation satellite system (GNSS)</topic><topic>GPS</topic><topic>Mapping</topic><topic>Maximization</topic><topic>Minimization</topic><topic>navigation</topic><topic>optimal sensor placement</topic><topic>Optimization</topic><topic>Performance assessment</topic><topic>Receivers</topic><topic>signals of opportunity</topic><topic>source localization</topic><topic>terrestrial transmitter mapping</topic><topic>Trajectory analysis</topic><topic>Transmitters</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morales, Joshua J.</creatorcontrib><creatorcontrib>Kassas, Zaher M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Morales, Joshua J.</au><au>Kassas, Zaher M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Collaborative Mapping of Terrestrial Transmitters: Receiver Placement and Performance Characterization</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>54</volume><issue>2</issue><spage>992</spage><epage>1007</epage><pages>992-1007</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>Mapping multiple unknown terrestrial signals of opportunity (SOP) transmitters via multiple collaborating receivers is considered. The receivers are assumed to have knowledge about their own states, make pseudorange observations on multiple unknown SOPs, and fuse these pseudoranges through a central estimator. Two problems are considered. The first problem assumes multiple receivers with random initial states to pre-exist in the environment. The question of where to optimally place an additional receiver so to maximize the quality of the estimate of the SOPs' states is addressed. A novel, computationally efficient optimization criterion that is based on area-maximization is proposed. It is shown that the proposed optimization criterion yields a convex program, the solution of which is comparable to two classical criteria: minimization of the geometric dilution of precision (GDOP) and maximization of the determinant of the inverse of the GDOP matrix. The second problem addresses the optimal mapping performance as a function of time and number of receivers in the environment. It is demonstrated that such optimal performance assessment could be generated off-line without knowledge of the receivers' trajectories or the receivers' estimates of the SOP. Experimental results are presented demonstrating collaborative mapping of an unknown terrestrial SOP emanating from a cellular tower for various receiver trajectories versus the optimal mapping performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2017.2773238</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4388-6142</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2018-04, Vol.54 (2), p.992-1007 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAES_2017_2773238 |
source | IEEE Xplore |
subjects | Centralized estimator Collaboration collaborative mapping Criteria Dilution dilution of precision (DOP) emitter localization Geometric dilution of precision geometric dilution of precision (GDOP) Global navigation satellite system global navigation satellite system (GNSS) GPS Mapping Maximization Minimization navigation optimal sensor placement Optimization Performance assessment Receivers signals of opportunity source localization terrestrial transmitter mapping Trajectory analysis Transmitters Uncertainty |
title | Optimal Collaborative Mapping of Terrestrial Transmitters: Receiver Placement and Performance Characterization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A48%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Collaborative%20Mapping%20of%20Terrestrial%20Transmitters:%20Receiver%20Placement%20and%20Performance%20Characterization&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Morales,%20Joshua%20J.&rft.date=2018-04-01&rft.volume=54&rft.issue=2&rft.spage=992&rft.epage=1007&rft.pages=992-1007&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2017.2773238&rft_dat=%3Cproquest_RIE%3E2025110665%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2025110665&rft_id=info:pmid/&rft_ieee_id=8106762&rfr_iscdi=true |