Path Planning for UAVs for Maximum Information Collection

Path planning considers the problem of designing the path a vehicle is supposed to follow. Along the designed path the objectives are to maximize the collected information (CI) from desired regions (DR), while avoiding flying over forbidden regions (FR) and reaching the destination. The path plannin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2013-01, Vol.49 (1), p.502-520
Hauptverfasser: Ergezer, H., Leblebicioglu, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 520
container_issue 1
container_start_page 502
container_title IEEE transactions on aerospace and electronic systems
container_volume 49
creator Ergezer, H.
Leblebicioglu, K.
description Path planning considers the problem of designing the path a vehicle is supposed to follow. Along the designed path the objectives are to maximize the collected information (CI) from desired regions (DR), while avoiding flying over forbidden regions (FR) and reaching the destination. The path planning problem for a single unmanned air vehicle (UAV) is studied with the proposal of novel evolutionary operators: pull-to-desired-region (PTDR), push-from-forbidden-region (PFFR), and pull-to-final-point (PTFP). In addition to these newly proposed operators, standard mutation and crossover operators are used. The initial population seed-path is obtained by both utilizing the pattern search method and solving the traveling salesman problem (TSP). Using this seed-path the initial population of paths is generated by randomly selected heading angles. It should be emphasized that all of the paths in population in any generation of the genetic algorithm (GA) are constructed using the dynamical mathematical model of a UAV equipped with the autopilot and guidance algorithms. Simulations are realized in the MATLAB/Simulink environment. The path planning algorithm is tested with different scenarios, and the results are presented in Section VI. Although there are previous studies in this field, the focus here is on maximizing the CI instead of minimizing the total mission time. In addition it is observed that the proposed operators generate better paths than classical evolutionary operators.
doi_str_mv 10.1109/TAES.2013.6404117
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAES_2013_6404117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6404117</ieee_id><sourcerecordid>2863274421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e037d7679601ec2f909070e134bd51af8b4d8673638952b4cc2edf00845991dc3</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIlMIHIC6ROKfs2k5sH6uqPKQiKtFytVzHgVR5FDuV4O9xaOG0M9qZfQwh1wgTRFB3q-n8dUIB2STnwBHFCRlhlolU5cBOyQgAZapohufkIoRtpFxyNiJqafqPZFmbtq3a96TsfLKevoVf8Gy-qmbfJE9tZI3pq65NZl1dOzvAS3JWmjq4q2Mdk_X9fDV7TBcvD0-z6SK1VLE-dcBEIXIR70BnaalAgQCHjG-KDE0pN7yQuWA5kyqjG24tdUUJIHmmFBaWjcntYe7Od597F3q97fa-jSs10lwKFR-RUYUHlfVdCN6VeuerxvhvjaCHhPSQkB4S0seEoufm4Kmcc__6v-4PSFBftA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1268794848</pqid></control><display><type>article</type><title>Path Planning for UAVs for Maximum Information Collection</title><source>IEEE Electronic Library (IEL)</source><creator>Ergezer, H. ; Leblebicioglu, K.</creator><creatorcontrib>Ergezer, H. ; Leblebicioglu, K.</creatorcontrib><description>Path planning considers the problem of designing the path a vehicle is supposed to follow. Along the designed path the objectives are to maximize the collected information (CI) from desired regions (DR), while avoiding flying over forbidden regions (FR) and reaching the destination. The path planning problem for a single unmanned air vehicle (UAV) is studied with the proposal of novel evolutionary operators: pull-to-desired-region (PTDR), push-from-forbidden-region (PFFR), and pull-to-final-point (PTFP). In addition to these newly proposed operators, standard mutation and crossover operators are used. The initial population seed-path is obtained by both utilizing the pattern search method and solving the traveling salesman problem (TSP). Using this seed-path the initial population of paths is generated by randomly selected heading angles. It should be emphasized that all of the paths in population in any generation of the genetic algorithm (GA) are constructed using the dynamical mathematical model of a UAV equipped with the autopilot and guidance algorithms. Simulations are realized in the MATLAB/Simulink environment. The path planning algorithm is tested with different scenarios, and the results are presented in Section VI. Although there are previous studies in this field, the focus here is on maximizing the CI instead of minimizing the total mission time. In addition it is observed that the proposed operators generate better paths than classical evolutionary operators.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2013.6404117</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aircraft ; Cameras ; Image resolution ; Linear programming ; Mathematical model ; Mathematical models ; Path planning ; Studies ; Traveling salesman problem ; Unmanned aerial vehicles</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2013-01, Vol.49 (1), p.502-520</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e037d7679601ec2f909070e134bd51af8b4d8673638952b4cc2edf00845991dc3</citedby><cites>FETCH-LOGICAL-c293t-e037d7679601ec2f909070e134bd51af8b4d8673638952b4cc2edf00845991dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6404117$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6404117$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ergezer, H.</creatorcontrib><creatorcontrib>Leblebicioglu, K.</creatorcontrib><title>Path Planning for UAVs for Maximum Information Collection</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>Path planning considers the problem of designing the path a vehicle is supposed to follow. Along the designed path the objectives are to maximize the collected information (CI) from desired regions (DR), while avoiding flying over forbidden regions (FR) and reaching the destination. The path planning problem for a single unmanned air vehicle (UAV) is studied with the proposal of novel evolutionary operators: pull-to-desired-region (PTDR), push-from-forbidden-region (PFFR), and pull-to-final-point (PTFP). In addition to these newly proposed operators, standard mutation and crossover operators are used. The initial population seed-path is obtained by both utilizing the pattern search method and solving the traveling salesman problem (TSP). Using this seed-path the initial population of paths is generated by randomly selected heading angles. It should be emphasized that all of the paths in population in any generation of the genetic algorithm (GA) are constructed using the dynamical mathematical model of a UAV equipped with the autopilot and guidance algorithms. Simulations are realized in the MATLAB/Simulink environment. The path planning algorithm is tested with different scenarios, and the results are presented in Section VI. Although there are previous studies in this field, the focus here is on maximizing the CI instead of minimizing the total mission time. In addition it is observed that the proposed operators generate better paths than classical evolutionary operators.</description><subject>Aircraft</subject><subject>Cameras</subject><subject>Image resolution</subject><subject>Linear programming</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Path planning</subject><subject>Studies</subject><subject>Traveling salesman problem</subject><subject>Unmanned aerial vehicles</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMtOwzAQtBBIlMIHIC6ROKfs2k5sH6uqPKQiKtFytVzHgVR5FDuV4O9xaOG0M9qZfQwh1wgTRFB3q-n8dUIB2STnwBHFCRlhlolU5cBOyQgAZapohufkIoRtpFxyNiJqafqPZFmbtq3a96TsfLKevoVf8Gy-qmbfJE9tZI3pq65NZl1dOzvAS3JWmjq4q2Mdk_X9fDV7TBcvD0-z6SK1VLE-dcBEIXIR70BnaalAgQCHjG-KDE0pN7yQuWA5kyqjG24tdUUJIHmmFBaWjcntYe7Od597F3q97fa-jSs10lwKFR-RUYUHlfVdCN6VeuerxvhvjaCHhPSQkB4S0seEoufm4Kmcc__6v-4PSFBftA</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Ergezer, H.</creator><creator>Leblebicioglu, K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201301</creationdate><title>Path Planning for UAVs for Maximum Information Collection</title><author>Ergezer, H. ; Leblebicioglu, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e037d7679601ec2f909070e134bd51af8b4d8673638952b4cc2edf00845991dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aircraft</topic><topic>Cameras</topic><topic>Image resolution</topic><topic>Linear programming</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Path planning</topic><topic>Studies</topic><topic>Traveling salesman problem</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ergezer, H.</creatorcontrib><creatorcontrib>Leblebicioglu, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ergezer, H.</au><au>Leblebicioglu, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Path Planning for UAVs for Maximum Information Collection</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2013-01</date><risdate>2013</risdate><volume>49</volume><issue>1</issue><spage>502</spage><epage>520</epage><pages>502-520</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>Path planning considers the problem of designing the path a vehicle is supposed to follow. Along the designed path the objectives are to maximize the collected information (CI) from desired regions (DR), while avoiding flying over forbidden regions (FR) and reaching the destination. The path planning problem for a single unmanned air vehicle (UAV) is studied with the proposal of novel evolutionary operators: pull-to-desired-region (PTDR), push-from-forbidden-region (PFFR), and pull-to-final-point (PTFP). In addition to these newly proposed operators, standard mutation and crossover operators are used. The initial population seed-path is obtained by both utilizing the pattern search method and solving the traveling salesman problem (TSP). Using this seed-path the initial population of paths is generated by randomly selected heading angles. It should be emphasized that all of the paths in population in any generation of the genetic algorithm (GA) are constructed using the dynamical mathematical model of a UAV equipped with the autopilot and guidance algorithms. Simulations are realized in the MATLAB/Simulink environment. The path planning algorithm is tested with different scenarios, and the results are presented in Section VI. Although there are previous studies in this field, the focus here is on maximizing the CI instead of minimizing the total mission time. In addition it is observed that the proposed operators generate better paths than classical evolutionary operators.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2013.6404117</doi><tpages>19</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2013-01, Vol.49 (1), p.502-520
issn 0018-9251
1557-9603
language eng
recordid cdi_crossref_primary_10_1109_TAES_2013_6404117
source IEEE Electronic Library (IEL)
subjects Aircraft
Cameras
Image resolution
Linear programming
Mathematical model
Mathematical models
Path planning
Studies
Traveling salesman problem
Unmanned aerial vehicles
title Path Planning for UAVs for Maximum Information Collection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T13%3A43%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Path%20Planning%20for%20UAVs%20for%20Maximum%20Information%20Collection&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Ergezer,%20H.&rft.date=2013-01&rft.volume=49&rft.issue=1&rft.spage=502&rft.epage=520&rft.pages=502-520&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2013.6404117&rft_dat=%3Cproquest_RIE%3E2863274421%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1268794848&rft_id=info:pmid/&rft_ieee_id=6404117&rfr_iscdi=true