Joint Data Association, Registration, and Fusion using EM-KF

In performing surveillance using a sensor network, data association and registration are two essential processes which associate data from different sensors and align them in a common coordinate system. While these two processes are usually addressed separately, they actually affect each other. That...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2010-04, Vol.46 (2), p.496-507
Hauptverfasser: Zhenhua Li, Siyue Chen, Leung, Henry, Bosse, Eloi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 507
container_issue 2
container_start_page 496
container_title IEEE transactions on aerospace and electronic systems
container_volume 46
creator Zhenhua Li
Siyue Chen
Leung, Henry
Bosse, Eloi
description In performing surveillance using a sensor network, data association and registration are two essential processes which associate data from different sensors and align them in a common coordinate system. While these two processes are usually addressed separately, they actually affect each other. That is, registration requires correctly associated data, and data with sensor biases will result in wrong association. We present a novel joint sensor association, registration, and fusion approach for multisensor surveillance. In order to perform registration and association together, the expectation-maximization (EM) algorithm is incorporated with the Kalman filter (KF) to give simultaneous state and parameter estimates. Computer simulations are carried out to evaluate the performances of the proposed joint association, registration, and fusion method based on EM-KF.
doi_str_mv 10.1109/TAES.2010.5461637
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAES_2010_5461637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5461637</ieee_id><sourcerecordid>855687397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-eb1400f74f747a480d28942a1bfef3eefbd817119379cdf3009315768f28fdb23</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZ_gHgJeNCD0Z39yOyCl1JbvyqC1vOyTXZLSpvUbHLw37ul1YMHYZiZl3lmYF5CToFeA1B9Mx2M3q8ZjVKKDDKOe6QHUmKqM8r3SY9SUKlmEg7JUQiLKIUSvEdun-qyapM729pkEEKdl7Yt6-oqeXPzMrTNTtmqSMZdiH0SczVPRi_p8_iYHHi7DO5kV_vkYzyaDh_Syev943AwSXPBRJu6GQhKPYoYaIWiBVNaMAsz7zx3zs8KBQigOeq88JxSzUFipjxTvpgx3icX27vrpv7sXGjNqgy5Wy5t5eouGCVlppBrjOTlvyRkCBwRuYzo-R90UXdNFf8wQBkCqkypSMGWyps6hMZ5s27KlW2-ImQ2zpuN82bjvNk5H3fOtjulc-6X_5l-Awhse_I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027178688</pqid></control><display><type>article</type><title>Joint Data Association, Registration, and Fusion using EM-KF</title><source>IEEE Electronic Library (IEL)</source><creator>Zhenhua Li ; Siyue Chen ; Leung, Henry ; Bosse, Eloi</creator><creatorcontrib>Zhenhua Li ; Siyue Chen ; Leung, Henry ; Bosse, Eloi</creatorcontrib><description>In performing surveillance using a sensor network, data association and registration are two essential processes which associate data from different sensors and align them in a common coordinate system. While these two processes are usually addressed separately, they actually affect each other. That is, registration requires correctly associated data, and data with sensor biases will result in wrong association. We present a novel joint sensor association, registration, and fusion approach for multisensor surveillance. In order to perform registration and association together, the expectation-maximization (EM) algorithm is incorporated with the Kalman filter (KF) to give simultaneous state and parameter estimates. Computer simulations are carried out to evaluate the performances of the proposed joint association, registration, and fusion method based on EM-KF.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2010.5461637</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aircraft components ; Algorithms ; Computer simulation ; Coordinate measuring machines ; Electronic systems ; Estimates ; Maximum likelihood estimation ; Networks ; Parameter estimation ; Performance evaluation ; Radar tracking ; Research and development ; Sensor fusion ; Sensor systems ; Sensors ; State estimation ; Surveillance ; Target tracking</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2010-04, Vol.46 (2), p.496-507</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-eb1400f74f747a480d28942a1bfef3eefbd817119379cdf3009315768f28fdb23</citedby><cites>FETCH-LOGICAL-c424t-eb1400f74f747a480d28942a1bfef3eefbd817119379cdf3009315768f28fdb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5461637$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5461637$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhenhua Li</creatorcontrib><creatorcontrib>Siyue Chen</creatorcontrib><creatorcontrib>Leung, Henry</creatorcontrib><creatorcontrib>Bosse, Eloi</creatorcontrib><title>Joint Data Association, Registration, and Fusion using EM-KF</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>In performing surveillance using a sensor network, data association and registration are two essential processes which associate data from different sensors and align them in a common coordinate system. While these two processes are usually addressed separately, they actually affect each other. That is, registration requires correctly associated data, and data with sensor biases will result in wrong association. We present a novel joint sensor association, registration, and fusion approach for multisensor surveillance. In order to perform registration and association together, the expectation-maximization (EM) algorithm is incorporated with the Kalman filter (KF) to give simultaneous state and parameter estimates. Computer simulations are carried out to evaluate the performances of the proposed joint association, registration, and fusion method based on EM-KF.</description><subject>Aircraft components</subject><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Coordinate measuring machines</subject><subject>Electronic systems</subject><subject>Estimates</subject><subject>Maximum likelihood estimation</subject><subject>Networks</subject><subject>Parameter estimation</subject><subject>Performance evaluation</subject><subject>Radar tracking</subject><subject>Research and development</subject><subject>Sensor fusion</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>State estimation</subject><subject>Surveillance</subject><subject>Target tracking</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1Lw0AQhhdRsFZ_gHgJeNCD0Z39yOyCl1JbvyqC1vOyTXZLSpvUbHLw37ul1YMHYZiZl3lmYF5CToFeA1B9Mx2M3q8ZjVKKDDKOe6QHUmKqM8r3SY9SUKlmEg7JUQiLKIUSvEdun-qyapM729pkEEKdl7Yt6-oqeXPzMrTNTtmqSMZdiH0SczVPRi_p8_iYHHi7DO5kV_vkYzyaDh_Syev943AwSXPBRJu6GQhKPYoYaIWiBVNaMAsz7zx3zs8KBQigOeq88JxSzUFipjxTvpgx3icX27vrpv7sXGjNqgy5Wy5t5eouGCVlppBrjOTlvyRkCBwRuYzo-R90UXdNFf8wQBkCqkypSMGWyps6hMZ5s27KlW2-ImQ2zpuN82bjvNk5H3fOtjulc-6X_5l-Awhse_I</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Zhenhua Li</creator><creator>Siyue Chen</creator><creator>Leung, Henry</creator><creator>Bosse, Eloi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>201004</creationdate><title>Joint Data Association, Registration, and Fusion using EM-KF</title><author>Zhenhua Li ; Siyue Chen ; Leung, Henry ; Bosse, Eloi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-eb1400f74f747a480d28942a1bfef3eefbd817119379cdf3009315768f28fdb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aircraft components</topic><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Coordinate measuring machines</topic><topic>Electronic systems</topic><topic>Estimates</topic><topic>Maximum likelihood estimation</topic><topic>Networks</topic><topic>Parameter estimation</topic><topic>Performance evaluation</topic><topic>Radar tracking</topic><topic>Research and development</topic><topic>Sensor fusion</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>State estimation</topic><topic>Surveillance</topic><topic>Target tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhenhua Li</creatorcontrib><creatorcontrib>Siyue Chen</creatorcontrib><creatorcontrib>Leung, Henry</creatorcontrib><creatorcontrib>Bosse, Eloi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhenhua Li</au><au>Siyue Chen</au><au>Leung, Henry</au><au>Bosse, Eloi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Data Association, Registration, and Fusion using EM-KF</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2010-04</date><risdate>2010</risdate><volume>46</volume><issue>2</issue><spage>496</spage><epage>507</epage><pages>496-507</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>In performing surveillance using a sensor network, data association and registration are two essential processes which associate data from different sensors and align them in a common coordinate system. While these two processes are usually addressed separately, they actually affect each other. That is, registration requires correctly associated data, and data with sensor biases will result in wrong association. We present a novel joint sensor association, registration, and fusion approach for multisensor surveillance. In order to perform registration and association together, the expectation-maximization (EM) algorithm is incorporated with the Kalman filter (KF) to give simultaneous state and parameter estimates. Computer simulations are carried out to evaluate the performances of the proposed joint association, registration, and fusion method based on EM-KF.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2010.5461637</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2010-04, Vol.46 (2), p.496-507
issn 0018-9251
1557-9603
language eng
recordid cdi_crossref_primary_10_1109_TAES_2010_5461637
source IEEE Electronic Library (IEL)
subjects Aircraft components
Algorithms
Computer simulation
Coordinate measuring machines
Electronic systems
Estimates
Maximum likelihood estimation
Networks
Parameter estimation
Performance evaluation
Radar tracking
Research and development
Sensor fusion
Sensor systems
Sensors
State estimation
Surveillance
Target tracking
title Joint Data Association, Registration, and Fusion using EM-KF
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A23%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Data%20Association,%20Registration,%20and%20Fusion%20using%20EM-KF&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Zhenhua%20Li&rft.date=2010-04&rft.volume=46&rft.issue=2&rft.spage=496&rft.epage=507&rft.pages=496-507&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2010.5461637&rft_dat=%3Cproquest_RIE%3E855687397%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027178688&rft_id=info:pmid/&rft_ieee_id=5461637&rfr_iscdi=true