Closed-Loop Interpolation by Moment Matching for Linear and Nonlinear Systems

The relaxation of strong stability conditions on the system to be interpolated is one of the open problems in interconnection-based interpolation by moment matching. To address this issue we revisit the interconnection-based notion of moment by introducing an output-based signal generator, called ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2024-10, p.1-16
Hauptverfasser: Moreschini, Alessio, Astolfi, Alessandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue
container_start_page 1
container_title IEEE transactions on automatic control
container_volume
creator Moreschini, Alessio
Astolfi, Alessandro
description The relaxation of strong stability conditions on the system to be interpolated is one of the open problems in interconnection-based interpolation by moment matching. To address this issue we revisit the interconnection-based notion of moment by introducing an output-based signal generator, called generalized signal generator . This generator, which models the desired interpolation points, is designed to drive the state of the system to the invariant manifold defining the moments. This characterization of moments yields a closed-loop scheme built from the output of the underlying system. Leveraging this scheme we characterize all systems achieving moment matching from a prescribed generalized signal generator designed to interpolate the underlying model. Furthermore, we show that the generalized signal generator can be employed in the construction of parametrized models that preserve the Lur'e structure with the same static nonlinearity. Finally, we validate the closed-loop moment matching scheme on a Chua's circuit, showing how an electronic circuit that exhibits chaotic behavior can be interpolated by an interpolant possessing a unique limit cycle.
doi_str_mv 10.1109/TAC.2024.3484309
format Article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2024_3484309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10723813</ieee_id><sourcerecordid>10_1109_TAC_2024_3484309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1049-4c4dcb99385785081e5a6702626d888d89d6fbd33e65016052494339af823e803</originalsourceid><addsrcrecordid>eNpNkD1PwzAYhC0EEqWwMzD4D6S8_szrsYqAVkphoMyRGzsQlNqVnaX_nlTtwHQ66e50egh5ZLBgDMzzdlktOHC5EBKlAHNFZkwpLLji4prMABgWhqO-JXc5_05WS8lmZFMNMXtX1DEe6DqMPh3iYMc-Bro70k3c-zDSjR3bnz580y4mWvfB20RtcPQ9huHsPo959Pt8T246O2T_cNE5-Xp92Varov54W1fLumgZSFPIVrp2Z4xAVaICZF5ZXQLXXDtEdGic7nZOCK_VdBQUl0YKYWyHXHgEMSdw3m1TzDn5rjmkfm_TsWHQnHA0E47mhKO54JgqT-dK773_Fy-5QCbEH3PLWkM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Closed-Loop Interpolation by Moment Matching for Linear and Nonlinear Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Moreschini, Alessio ; Astolfi, Alessandro</creator><creatorcontrib>Moreschini, Alessio ; Astolfi, Alessandro</creatorcontrib><description>The relaxation of strong stability conditions on the system to be interpolated is one of the open problems in interconnection-based interpolation by moment matching. To address this issue we revisit the interconnection-based notion of moment by introducing an output-based signal generator, called generalized signal generator . This generator, which models the desired interpolation points, is designed to drive the state of the system to the invariant manifold defining the moments. This characterization of moments yields a closed-loop scheme built from the output of the underlying system. Leveraging this scheme we characterize all systems achieving moment matching from a prescribed generalized signal generator designed to interpolate the underlying model. Furthermore, we show that the generalized signal generator can be employed in the construction of parametrized models that preserve the Lur'e structure with the same static nonlinearity. Finally, we validate the closed-loop moment matching scheme on a Chua's circuit, showing how an electronic circuit that exhibits chaotic behavior can be interpolated by an interpolant possessing a unique limit cycle.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2024.3484309</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Closed-loop interpolation ; Generators ; Integrated circuit interconnections ; Interpolation ; Linear systems ; Mathematical models ; Moment Matching ; Nonlinear Model Reduction ; Nonlinear Systems ; Reduced order systems ; Signal generators ; Stability analysis ; Steady-state ; Transfer functions</subject><ispartof>IEEE transactions on automatic control, 2024-10, p.1-16</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0860-1073 ; 0000-0002-4331-454X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10723813$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids></links><search><creatorcontrib>Moreschini, Alessio</creatorcontrib><creatorcontrib>Astolfi, Alessandro</creatorcontrib><title>Closed-Loop Interpolation by Moment Matching for Linear and Nonlinear Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>The relaxation of strong stability conditions on the system to be interpolated is one of the open problems in interconnection-based interpolation by moment matching. To address this issue we revisit the interconnection-based notion of moment by introducing an output-based signal generator, called generalized signal generator . This generator, which models the desired interpolation points, is designed to drive the state of the system to the invariant manifold defining the moments. This characterization of moments yields a closed-loop scheme built from the output of the underlying system. Leveraging this scheme we characterize all systems achieving moment matching from a prescribed generalized signal generator designed to interpolate the underlying model. Furthermore, we show that the generalized signal generator can be employed in the construction of parametrized models that preserve the Lur'e structure with the same static nonlinearity. Finally, we validate the closed-loop moment matching scheme on a Chua's circuit, showing how an electronic circuit that exhibits chaotic behavior can be interpolated by an interpolant possessing a unique limit cycle.</description><subject>Closed-loop interpolation</subject><subject>Generators</subject><subject>Integrated circuit interconnections</subject><subject>Interpolation</subject><subject>Linear systems</subject><subject>Mathematical models</subject><subject>Moment Matching</subject><subject>Nonlinear Model Reduction</subject><subject>Nonlinear Systems</subject><subject>Reduced order systems</subject><subject>Signal generators</subject><subject>Stability analysis</subject><subject>Steady-state</subject><subject>Transfer functions</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAYhC0EEqWwMzD4D6S8_szrsYqAVkphoMyRGzsQlNqVnaX_nlTtwHQ66e50egh5ZLBgDMzzdlktOHC5EBKlAHNFZkwpLLji4prMABgWhqO-JXc5_05WS8lmZFMNMXtX1DEe6DqMPh3iYMc-Bro70k3c-zDSjR3bnz580y4mWvfB20RtcPQ9huHsPo959Pt8T246O2T_cNE5-Xp92Varov54W1fLumgZSFPIVrp2Z4xAVaICZF5ZXQLXXDtEdGic7nZOCK_VdBQUl0YKYWyHXHgEMSdw3m1TzDn5rjmkfm_TsWHQnHA0E47mhKO54JgqT-dK773_Fy-5QCbEH3PLWkM</recordid><startdate>20241018</startdate><enddate>20241018</enddate><creator>Moreschini, Alessio</creator><creator>Astolfi, Alessandro</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0860-1073</orcidid><orcidid>https://orcid.org/0000-0002-4331-454X</orcidid></search><sort><creationdate>20241018</creationdate><title>Closed-Loop Interpolation by Moment Matching for Linear and Nonlinear Systems</title><author>Moreschini, Alessio ; Astolfi, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1049-4c4dcb99385785081e5a6702626d888d89d6fbd33e65016052494339af823e803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Closed-loop interpolation</topic><topic>Generators</topic><topic>Integrated circuit interconnections</topic><topic>Interpolation</topic><topic>Linear systems</topic><topic>Mathematical models</topic><topic>Moment Matching</topic><topic>Nonlinear Model Reduction</topic><topic>Nonlinear Systems</topic><topic>Reduced order systems</topic><topic>Signal generators</topic><topic>Stability analysis</topic><topic>Steady-state</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moreschini, Alessio</creatorcontrib><creatorcontrib>Astolfi, Alessandro</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moreschini, Alessio</au><au>Astolfi, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Closed-Loop Interpolation by Moment Matching for Linear and Nonlinear Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-10-18</date><risdate>2024</risdate><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>The relaxation of strong stability conditions on the system to be interpolated is one of the open problems in interconnection-based interpolation by moment matching. To address this issue we revisit the interconnection-based notion of moment by introducing an output-based signal generator, called generalized signal generator . This generator, which models the desired interpolation points, is designed to drive the state of the system to the invariant manifold defining the moments. This characterization of moments yields a closed-loop scheme built from the output of the underlying system. Leveraging this scheme we characterize all systems achieving moment matching from a prescribed generalized signal generator designed to interpolate the underlying model. Furthermore, we show that the generalized signal generator can be employed in the construction of parametrized models that preserve the Lur'e structure with the same static nonlinearity. Finally, we validate the closed-loop moment matching scheme on a Chua's circuit, showing how an electronic circuit that exhibits chaotic behavior can be interpolated by an interpolant possessing a unique limit cycle.</abstract><pub>IEEE</pub><doi>10.1109/TAC.2024.3484309</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0860-1073</orcidid><orcidid>https://orcid.org/0000-0002-4331-454X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2024-10, p.1-16
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_2024_3484309
source IEEE Electronic Library (IEL)
subjects Closed-loop interpolation
Generators
Integrated circuit interconnections
Interpolation
Linear systems
Mathematical models
Moment Matching
Nonlinear Model Reduction
Nonlinear Systems
Reduced order systems
Signal generators
Stability analysis
Steady-state
Transfer functions
title Closed-Loop Interpolation by Moment Matching for Linear and Nonlinear Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Closed-Loop%20Interpolation%20by%20Moment%20Matching%20for%20Linear%20and%20Nonlinear%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Moreschini,%20Alessio&rft.date=2024-10-18&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2024.3484309&rft_dat=%3Ccrossref_ieee_%3E10_1109_TAC_2024_3484309%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10723813&rfr_iscdi=true