Monotonicity and Contraction on Polyhedral Cones
In this note, we study monotone dynamical systems with respect to polyhedral cones. Using the half-space representation and the vertex representation, we propose three equivalent conditions to certify monotonicity of a dynamical system with respect to a polyhedral cone. We then introduce the notion...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2024-09, p.1-8 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on automatic control |
container_volume | |
creator | Jafarpour, Saber Coogan, Samuel |
description | In this note, we study monotone dynamical systems with respect to polyhedral cones. Using the half-space representation and the vertex representation, we propose three equivalent conditions to certify monotonicity of a dynamical system with respect to a polyhedral cone. We then introduce the notion of gauge norm associated with a cone and provide closed-from formulas for computing gauge norms associated with polyhedral cones. A key feature of gauge norms is that contractivity of monotone systems with respect to them can be efficiently characterized using simple inequalities. This result generalizes the well-known criteria for Hurwitzness of Metzler matrices and provides a scalable approach to search for Lyapunov functions of monotone systems with respect to polyhedral cones. Finally, we study the applications of our results in transient stability of dynamic flow networks and in scalable control design with safety guarantees. |
doi_str_mv | 10.1109/TAC.2024.3454258 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2024_3454258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10664039</ieee_id><sourcerecordid>10_1109_TAC_2024_3454258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1048-cc8cecc844b7c98e169279b2958504408748f1fb7859f70d8d24165a355146fd3</originalsourceid><addsrcrecordid>eNpNj0FLxDAQhYMoWFfvHjz0D7ROkkmaHJeirrCih_Uc0jTBSm0k6aX_3i67B-Exj8fMG_gIuadQUwr68bBtawYMa44CmVAXpKBCqIoJxi9JAUBVpZmS1-Qm5-81SkRaEHiLU5zjNLhhXko79WUbpzlZNw9xKld9xHH58n2y43Hj8y25CnbM_u7sG_L5_HRod9X-_eW13e4rRwFV5Zxyfh2IXeO08lRq1uiOaaEEIIJqUAUaukYJHRroVc-QSmG5EBRl6PmGwOmvSzHn5IP5TcOPTYuhYI7EZiU2R2JzJl4rD6fK4L3_dy4lAtf8D0gVUHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Monotonicity and Contraction on Polyhedral Cones</title><source>IEEE Electronic Library (IEL)</source><creator>Jafarpour, Saber ; Coogan, Samuel</creator><creatorcontrib>Jafarpour, Saber ; Coogan, Samuel</creatorcontrib><description>In this note, we study monotone dynamical systems with respect to polyhedral cones. Using the half-space representation and the vertex representation, we propose three equivalent conditions to certify monotonicity of a dynamical system with respect to a polyhedral cone. We then introduce the notion of gauge norm associated with a cone and provide closed-from formulas for computing gauge norms associated with polyhedral cones. A key feature of gauge norms is that contractivity of monotone systems with respect to them can be efficiently characterized using simple inequalities. This result generalizes the well-known criteria for Hurwitzness of Metzler matrices and provides a scalable approach to search for Lyapunov functions of monotone systems with respect to polyhedral cones. Finally, we study the applications of our results in transient stability of dynamic flow networks and in scalable control design with safety guarantees.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2024.3454258</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cooperative systems ; Dynamical systems ; Lyapunov methods ; Stability analysis ; Trajectory ; Transient analysis ; Vectors</subject><ispartof>IEEE transactions on automatic control, 2024-09, p.1-8</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10664039$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10664039$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jafarpour, Saber</creatorcontrib><creatorcontrib>Coogan, Samuel</creatorcontrib><title>Monotonicity and Contraction on Polyhedral Cones</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>In this note, we study monotone dynamical systems with respect to polyhedral cones. Using the half-space representation and the vertex representation, we propose three equivalent conditions to certify monotonicity of a dynamical system with respect to a polyhedral cone. We then introduce the notion of gauge norm associated with a cone and provide closed-from formulas for computing gauge norms associated with polyhedral cones. A key feature of gauge norms is that contractivity of monotone systems with respect to them can be efficiently characterized using simple inequalities. This result generalizes the well-known criteria for Hurwitzness of Metzler matrices and provides a scalable approach to search for Lyapunov functions of monotone systems with respect to polyhedral cones. Finally, we study the applications of our results in transient stability of dynamic flow networks and in scalable control design with safety guarantees.</description><subject>Cooperative systems</subject><subject>Dynamical systems</subject><subject>Lyapunov methods</subject><subject>Stability analysis</subject><subject>Trajectory</subject><subject>Transient analysis</subject><subject>Vectors</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNj0FLxDAQhYMoWFfvHjz0D7ROkkmaHJeirrCih_Uc0jTBSm0k6aX_3i67B-Exj8fMG_gIuadQUwr68bBtawYMa44CmVAXpKBCqIoJxi9JAUBVpZmS1-Qm5-81SkRaEHiLU5zjNLhhXko79WUbpzlZNw9xKld9xHH58n2y43Hj8y25CnbM_u7sG_L5_HRod9X-_eW13e4rRwFV5Zxyfh2IXeO08lRq1uiOaaEEIIJqUAUaukYJHRroVc-QSmG5EBRl6PmGwOmvSzHn5IP5TcOPTYuhYI7EZiU2R2JzJl4rD6fK4L3_dy4lAtf8D0gVUHw</recordid><startdate>20240903</startdate><enddate>20240903</enddate><creator>Jafarpour, Saber</creator><creator>Coogan, Samuel</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240903</creationdate><title>Monotonicity and Contraction on Polyhedral Cones</title><author>Jafarpour, Saber ; Coogan, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1048-cc8cecc844b7c98e169279b2958504408748f1fb7859f70d8d24165a355146fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cooperative systems</topic><topic>Dynamical systems</topic><topic>Lyapunov methods</topic><topic>Stability analysis</topic><topic>Trajectory</topic><topic>Transient analysis</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jafarpour, Saber</creatorcontrib><creatorcontrib>Coogan, Samuel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jafarpour, Saber</au><au>Coogan, Samuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monotonicity and Contraction on Polyhedral Cones</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-09-03</date><risdate>2024</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>In this note, we study monotone dynamical systems with respect to polyhedral cones. Using the half-space representation and the vertex representation, we propose three equivalent conditions to certify monotonicity of a dynamical system with respect to a polyhedral cone. We then introduce the notion of gauge norm associated with a cone and provide closed-from formulas for computing gauge norms associated with polyhedral cones. A key feature of gauge norms is that contractivity of monotone systems with respect to them can be efficiently characterized using simple inequalities. This result generalizes the well-known criteria for Hurwitzness of Metzler matrices and provides a scalable approach to search for Lyapunov functions of monotone systems with respect to polyhedral cones. Finally, we study the applications of our results in transient stability of dynamic flow networks and in scalable control design with safety guarantees.</abstract><pub>IEEE</pub><doi>10.1109/TAC.2024.3454258</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2024-09, p.1-8 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAC_2024_3454258 |
source | IEEE Electronic Library (IEL) |
subjects | Cooperative systems Dynamical systems Lyapunov methods Stability analysis Trajectory Transient analysis Vectors |
title | Monotonicity and Contraction on Polyhedral Cones |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monotonicity%20and%20Contraction%20on%20Polyhedral%20Cones&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Jafarpour,%20Saber&rft.date=2024-09-03&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2024.3454258&rft_dat=%3Ccrossref_RIE%3E10_1109_TAC_2024_3454258%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10664039&rfr_iscdi=true |