Monotonicity and Contraction on Polyhedral Cones

In this note, we study monotone dynamical systems with respect to polyhedral cones. Using the half-space representation and the vertex representation, we propose three equivalent conditions to certify monotonicity of a dynamical system with respect to a polyhedral cone. We then introduce the notion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2024-09, p.1-8
Hauptverfasser: Jafarpour, Saber, Coogan, Samuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title IEEE transactions on automatic control
container_volume
creator Jafarpour, Saber
Coogan, Samuel
description In this note, we study monotone dynamical systems with respect to polyhedral cones. Using the half-space representation and the vertex representation, we propose three equivalent conditions to certify monotonicity of a dynamical system with respect to a polyhedral cone. We then introduce the notion of gauge norm associated with a cone and provide closed-from formulas for computing gauge norms associated with polyhedral cones. A key feature of gauge norms is that contractivity of monotone systems with respect to them can be efficiently characterized using simple inequalities. This result generalizes the well-known criteria for Hurwitzness of Metzler matrices and provides a scalable approach to search for Lyapunov functions of monotone systems with respect to polyhedral cones. Finally, we study the applications of our results in transient stability of dynamic flow networks and in scalable control design with safety guarantees.
doi_str_mv 10.1109/TAC.2024.3454258
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2024_3454258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10664039</ieee_id><sourcerecordid>10_1109_TAC_2024_3454258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1048-cc8cecc844b7c98e169279b2958504408748f1fb7859f70d8d24165a355146fd3</originalsourceid><addsrcrecordid>eNpNj0FLxDAQhYMoWFfvHjz0D7ROkkmaHJeirrCih_Uc0jTBSm0k6aX_3i67B-Exj8fMG_gIuadQUwr68bBtawYMa44CmVAXpKBCqIoJxi9JAUBVpZmS1-Qm5-81SkRaEHiLU5zjNLhhXko79WUbpzlZNw9xKld9xHH58n2y43Hj8y25CnbM_u7sG_L5_HRod9X-_eW13e4rRwFV5Zxyfh2IXeO08lRq1uiOaaEEIIJqUAUaukYJHRroVc-QSmG5EBRl6PmGwOmvSzHn5IP5TcOPTYuhYI7EZiU2R2JzJl4rD6fK4L3_dy4lAtf8D0gVUHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Monotonicity and Contraction on Polyhedral Cones</title><source>IEEE Electronic Library (IEL)</source><creator>Jafarpour, Saber ; Coogan, Samuel</creator><creatorcontrib>Jafarpour, Saber ; Coogan, Samuel</creatorcontrib><description>In this note, we study monotone dynamical systems with respect to polyhedral cones. Using the half-space representation and the vertex representation, we propose three equivalent conditions to certify monotonicity of a dynamical system with respect to a polyhedral cone. We then introduce the notion of gauge norm associated with a cone and provide closed-from formulas for computing gauge norms associated with polyhedral cones. A key feature of gauge norms is that contractivity of monotone systems with respect to them can be efficiently characterized using simple inequalities. This result generalizes the well-known criteria for Hurwitzness of Metzler matrices and provides a scalable approach to search for Lyapunov functions of monotone systems with respect to polyhedral cones. Finally, we study the applications of our results in transient stability of dynamic flow networks and in scalable control design with safety guarantees.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2024.3454258</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cooperative systems ; Dynamical systems ; Lyapunov methods ; Stability analysis ; Trajectory ; Transient analysis ; Vectors</subject><ispartof>IEEE transactions on automatic control, 2024-09, p.1-8</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10664039$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10664039$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jafarpour, Saber</creatorcontrib><creatorcontrib>Coogan, Samuel</creatorcontrib><title>Monotonicity and Contraction on Polyhedral Cones</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>In this note, we study monotone dynamical systems with respect to polyhedral cones. Using the half-space representation and the vertex representation, we propose three equivalent conditions to certify monotonicity of a dynamical system with respect to a polyhedral cone. We then introduce the notion of gauge norm associated with a cone and provide closed-from formulas for computing gauge norms associated with polyhedral cones. A key feature of gauge norms is that contractivity of monotone systems with respect to them can be efficiently characterized using simple inequalities. This result generalizes the well-known criteria for Hurwitzness of Metzler matrices and provides a scalable approach to search for Lyapunov functions of monotone systems with respect to polyhedral cones. Finally, we study the applications of our results in transient stability of dynamic flow networks and in scalable control design with safety guarantees.</description><subject>Cooperative systems</subject><subject>Dynamical systems</subject><subject>Lyapunov methods</subject><subject>Stability analysis</subject><subject>Trajectory</subject><subject>Transient analysis</subject><subject>Vectors</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNj0FLxDAQhYMoWFfvHjz0D7ROkkmaHJeirrCih_Uc0jTBSm0k6aX_3i67B-Exj8fMG_gIuadQUwr68bBtawYMa44CmVAXpKBCqIoJxi9JAUBVpZmS1-Qm5-81SkRaEHiLU5zjNLhhXko79WUbpzlZNw9xKld9xHH58n2y43Hj8y25CnbM_u7sG_L5_HRod9X-_eW13e4rRwFV5Zxyfh2IXeO08lRq1uiOaaEEIIJqUAUaukYJHRroVc-QSmG5EBRl6PmGwOmvSzHn5IP5TcOPTYuhYI7EZiU2R2JzJl4rD6fK4L3_dy4lAtf8D0gVUHw</recordid><startdate>20240903</startdate><enddate>20240903</enddate><creator>Jafarpour, Saber</creator><creator>Coogan, Samuel</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240903</creationdate><title>Monotonicity and Contraction on Polyhedral Cones</title><author>Jafarpour, Saber ; Coogan, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1048-cc8cecc844b7c98e169279b2958504408748f1fb7859f70d8d24165a355146fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cooperative systems</topic><topic>Dynamical systems</topic><topic>Lyapunov methods</topic><topic>Stability analysis</topic><topic>Trajectory</topic><topic>Transient analysis</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jafarpour, Saber</creatorcontrib><creatorcontrib>Coogan, Samuel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jafarpour, Saber</au><au>Coogan, Samuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monotonicity and Contraction on Polyhedral Cones</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-09-03</date><risdate>2024</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>In this note, we study monotone dynamical systems with respect to polyhedral cones. Using the half-space representation and the vertex representation, we propose three equivalent conditions to certify monotonicity of a dynamical system with respect to a polyhedral cone. We then introduce the notion of gauge norm associated with a cone and provide closed-from formulas for computing gauge norms associated with polyhedral cones. A key feature of gauge norms is that contractivity of monotone systems with respect to them can be efficiently characterized using simple inequalities. This result generalizes the well-known criteria for Hurwitzness of Metzler matrices and provides a scalable approach to search for Lyapunov functions of monotone systems with respect to polyhedral cones. Finally, we study the applications of our results in transient stability of dynamic flow networks and in scalable control design with safety guarantees.</abstract><pub>IEEE</pub><doi>10.1109/TAC.2024.3454258</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2024-09, p.1-8
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_2024_3454258
source IEEE Electronic Library (IEL)
subjects Cooperative systems
Dynamical systems
Lyapunov methods
Stability analysis
Trajectory
Transient analysis
Vectors
title Monotonicity and Contraction on Polyhedral Cones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monotonicity%20and%20Contraction%20on%20Polyhedral%20Cones&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Jafarpour,%20Saber&rft.date=2024-09-03&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2024.3454258&rft_dat=%3Ccrossref_RIE%3E10_1109_TAC_2024_3454258%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10664039&rfr_iscdi=true