Data-Driven Control of Unknown Switched Linear Systems Using Scenario Optimization
We tackle uniform state feedback control of switched linear systems under arbitrary switching using scenario optimization. We propose a data-driven control framework, in which scenario programs are formulated to compute stabilizing state feedback control relying on a finite set of observations of tr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2024-11, Vol.69 (11), p.7310-7325 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7325 |
---|---|
container_issue | 11 |
container_start_page | 7310 |
container_title | IEEE transactions on automatic control |
container_volume | 69 |
creator | Wang, Zheming Berger, Guillaume O. Jungers, Raphael M. |
description | We tackle uniform state feedback control of switched linear systems under arbitrary switching using scenario optimization. We propose a data-driven control framework, in which scenario programs are formulated to compute stabilizing state feedback control relying on a finite set of observations of trajectories with quadratic and sum of squares (SOS) Lyapunov functions. We do not require the exact dynamical model or the switching signal, and as a consequence, we aim at solving uniform stabilization problems, in which the feedback is stabilizing for all possible switching sequences. In order to generalize the solution obtained from trajectories to the actual system, probabilistic guarantees on the obtained quadratic or SOS Lyapunov function are derived in the spirit of scenario optimization. For the quadratic Lyapunov technique, the generalization relies on a geometric analysis argument, while, for the SOS Lyapunov technique, we follow a sensitivity analysis argument. In order to deal with high-dimensional systems, we also develop a parallelized scheme for the proposed approach. We show that, with some modifications, the data-driven quadratic Lyapunov technique can be extended to linear quadratic regulator (LQR) control design. Finally, the proposed data-driven control framework is demonstrated on several numerical examples. |
doi_str_mv | 10.1109/TAC.2024.3382610 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2024_3382610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10480454</ieee_id><sourcerecordid>3120655730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c160t-d714fd94131f8f37609291395ae1407a8e834db603edf8fe828a65eb623afd403</originalsourceid><addsrcrecordid>eNpNkEtPAjEUhRujiYjuXbho4nqwbzpLMvhKSEgE1k2ZuaNFaLGtEvz1DoGFq5uTfOfc5EPolpIBpaR8mI-qASNMDDjXTFFyhnpUSl0wyfg56hFCdVEyrS7RVUqrLiohaA-9jW22xTi6H_C4Cj7HsMahxQv_6cPO49nO5foDGjxxHmzEs33KsEl4kZx_x7MavI0u4Ok2u437tdkFf40uWrtOcHO6fbR4epxXL8Vk-vxajSZFTRXJRTOkom1KQTltdcuHipSspLyUFqggQ6tBc9EsFeHQdABopq2SsFSM27YRhPfR_XF3G8PXN6RsVuE7-u6l4ZQRJeWQHyhypOoYUorQmm10Gxv3hhJzMGc6c-ZgzpzMdZW7Y8UBwD9caCKk4H85PWk9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120655730</pqid></control><display><type>article</type><title>Data-Driven Control of Unknown Switched Linear Systems Using Scenario Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Zheming ; Berger, Guillaume O. ; Jungers, Raphael M.</creator><creatorcontrib>Wang, Zheming ; Berger, Guillaume O. ; Jungers, Raphael M.</creatorcontrib><description>We tackle uniform state feedback control of switched linear systems under arbitrary switching using scenario optimization. We propose a data-driven control framework, in which scenario programs are formulated to compute stabilizing state feedback control relying on a finite set of observations of trajectories with quadratic and sum of squares (SOS) Lyapunov functions. We do not require the exact dynamical model or the switching signal, and as a consequence, we aim at solving uniform stabilization problems, in which the feedback is stabilizing for all possible switching sequences. In order to generalize the solution obtained from trajectories to the actual system, probabilistic guarantees on the obtained quadratic or SOS Lyapunov function are derived in the spirit of scenario optimization. For the quadratic Lyapunov technique, the generalization relies on a geometric analysis argument, while, for the SOS Lyapunov technique, we follow a sensitivity analysis argument. In order to deal with high-dimensional systems, we also develop a parallelized scheme for the proposed approach. We show that, with some modifications, the data-driven quadratic Lyapunov technique can be extended to linear quadratic regulator (LQR) control design. Finally, the proposed data-driven control framework is demonstrated on several numerical examples.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2024.3382610</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Control systems ; Data-driven control ; Dimensional analysis ; Dynamic models ; Feedback control ; Liapunov functions ; Linear quadratic regulator ; Linear systems ; Optimization ; Probabilistic logic ; scenario optimization ; Sensitivity analysis ; Stability analysis ; Stabilization ; State feedback ; switched linear systems ; Switches ; Switching sequences ; Trajectory optimization</subject><ispartof>IEEE transactions on automatic control, 2024-11, Vol.69 (11), p.7310-7325</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c160t-d714fd94131f8f37609291395ae1407a8e834db603edf8fe828a65eb623afd403</cites><orcidid>0000-0002-7789-0940 ; 0000-0002-5580-0385 ; 0000-0002-0633-8948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10480454$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10480454$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Zheming</creatorcontrib><creatorcontrib>Berger, Guillaume O.</creatorcontrib><creatorcontrib>Jungers, Raphael M.</creatorcontrib><title>Data-Driven Control of Unknown Switched Linear Systems Using Scenario Optimization</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We tackle uniform state feedback control of switched linear systems under arbitrary switching using scenario optimization. We propose a data-driven control framework, in which scenario programs are formulated to compute stabilizing state feedback control relying on a finite set of observations of trajectories with quadratic and sum of squares (SOS) Lyapunov functions. We do not require the exact dynamical model or the switching signal, and as a consequence, we aim at solving uniform stabilization problems, in which the feedback is stabilizing for all possible switching sequences. In order to generalize the solution obtained from trajectories to the actual system, probabilistic guarantees on the obtained quadratic or SOS Lyapunov function are derived in the spirit of scenario optimization. For the quadratic Lyapunov technique, the generalization relies on a geometric analysis argument, while, for the SOS Lyapunov technique, we follow a sensitivity analysis argument. In order to deal with high-dimensional systems, we also develop a parallelized scheme for the proposed approach. We show that, with some modifications, the data-driven quadratic Lyapunov technique can be extended to linear quadratic regulator (LQR) control design. Finally, the proposed data-driven control framework is demonstrated on several numerical examples.</description><subject>Control systems</subject><subject>Data-driven control</subject><subject>Dimensional analysis</subject><subject>Dynamic models</subject><subject>Feedback control</subject><subject>Liapunov functions</subject><subject>Linear quadratic regulator</subject><subject>Linear systems</subject><subject>Optimization</subject><subject>Probabilistic logic</subject><subject>scenario optimization</subject><subject>Sensitivity analysis</subject><subject>Stability analysis</subject><subject>Stabilization</subject><subject>State feedback</subject><subject>switched linear systems</subject><subject>Switches</subject><subject>Switching sequences</subject><subject>Trajectory optimization</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPAjEUhRujiYjuXbho4nqwbzpLMvhKSEgE1k2ZuaNFaLGtEvz1DoGFq5uTfOfc5EPolpIBpaR8mI-qASNMDDjXTFFyhnpUSl0wyfg56hFCdVEyrS7RVUqrLiohaA-9jW22xTi6H_C4Cj7HsMahxQv_6cPO49nO5foDGjxxHmzEs33KsEl4kZx_x7MavI0u4Ok2u437tdkFf40uWrtOcHO6fbR4epxXL8Vk-vxajSZFTRXJRTOkom1KQTltdcuHipSspLyUFqggQ6tBc9EsFeHQdABopq2SsFSM27YRhPfR_XF3G8PXN6RsVuE7-u6l4ZQRJeWQHyhypOoYUorQmm10Gxv3hhJzMGc6c-ZgzpzMdZW7Y8UBwD9caCKk4H85PWk9</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Wang, Zheming</creator><creator>Berger, Guillaume O.</creator><creator>Jungers, Raphael M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7789-0940</orcidid><orcidid>https://orcid.org/0000-0002-5580-0385</orcidid><orcidid>https://orcid.org/0000-0002-0633-8948</orcidid></search><sort><creationdate>202411</creationdate><title>Data-Driven Control of Unknown Switched Linear Systems Using Scenario Optimization</title><author>Wang, Zheming ; Berger, Guillaume O. ; Jungers, Raphael M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c160t-d714fd94131f8f37609291395ae1407a8e834db603edf8fe828a65eb623afd403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Control systems</topic><topic>Data-driven control</topic><topic>Dimensional analysis</topic><topic>Dynamic models</topic><topic>Feedback control</topic><topic>Liapunov functions</topic><topic>Linear quadratic regulator</topic><topic>Linear systems</topic><topic>Optimization</topic><topic>Probabilistic logic</topic><topic>scenario optimization</topic><topic>Sensitivity analysis</topic><topic>Stability analysis</topic><topic>Stabilization</topic><topic>State feedback</topic><topic>switched linear systems</topic><topic>Switches</topic><topic>Switching sequences</topic><topic>Trajectory optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zheming</creatorcontrib><creatorcontrib>Berger, Guillaume O.</creatorcontrib><creatorcontrib>Jungers, Raphael M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Zheming</au><au>Berger, Guillaume O.</au><au>Jungers, Raphael M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Control of Unknown Switched Linear Systems Using Scenario Optimization</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-11</date><risdate>2024</risdate><volume>69</volume><issue>11</issue><spage>7310</spage><epage>7325</epage><pages>7310-7325</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We tackle uniform state feedback control of switched linear systems under arbitrary switching using scenario optimization. We propose a data-driven control framework, in which scenario programs are formulated to compute stabilizing state feedback control relying on a finite set of observations of trajectories with quadratic and sum of squares (SOS) Lyapunov functions. We do not require the exact dynamical model or the switching signal, and as a consequence, we aim at solving uniform stabilization problems, in which the feedback is stabilizing for all possible switching sequences. In order to generalize the solution obtained from trajectories to the actual system, probabilistic guarantees on the obtained quadratic or SOS Lyapunov function are derived in the spirit of scenario optimization. For the quadratic Lyapunov technique, the generalization relies on a geometric analysis argument, while, for the SOS Lyapunov technique, we follow a sensitivity analysis argument. In order to deal with high-dimensional systems, we also develop a parallelized scheme for the proposed approach. We show that, with some modifications, the data-driven quadratic Lyapunov technique can be extended to linear quadratic regulator (LQR) control design. Finally, the proposed data-driven control framework is demonstrated on several numerical examples.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2024.3382610</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7789-0940</orcidid><orcidid>https://orcid.org/0000-0002-5580-0385</orcidid><orcidid>https://orcid.org/0000-0002-0633-8948</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2024-11, Vol.69 (11), p.7310-7325 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAC_2024_3382610 |
source | IEEE Electronic Library (IEL) |
subjects | Control systems Data-driven control Dimensional analysis Dynamic models Feedback control Liapunov functions Linear quadratic regulator Linear systems Optimization Probabilistic logic scenario optimization Sensitivity analysis Stability analysis Stabilization State feedback switched linear systems Switches Switching sequences Trajectory optimization |
title | Data-Driven Control of Unknown Switched Linear Systems Using Scenario Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A39%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Control%20of%20Unknown%20Switched%20Linear%20Systems%20Using%20Scenario%20Optimization&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Wang,%20Zheming&rft.date=2024-11&rft.volume=69&rft.issue=11&rft.spage=7310&rft.epage=7325&rft.pages=7310-7325&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2024.3382610&rft_dat=%3Cproquest_RIE%3E3120655730%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120655730&rft_id=info:pmid/&rft_ieee_id=10480454&rfr_iscdi=true |