Data-Driven Control of Unknown Switched Linear Systems Using Scenario Optimization

We tackle uniform state feedback control of switched linear systems under arbitrary switching using scenario optimization. We propose a data-driven control framework, in which scenario programs are formulated to compute stabilizing state feedback control relying on a finite set of observations of tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2024-11, Vol.69 (11), p.7310-7325
Hauptverfasser: Wang, Zheming, Berger, Guillaume O., Jungers, Raphael M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7325
container_issue 11
container_start_page 7310
container_title IEEE transactions on automatic control
container_volume 69
creator Wang, Zheming
Berger, Guillaume O.
Jungers, Raphael M.
description We tackle uniform state feedback control of switched linear systems under arbitrary switching using scenario optimization. We propose a data-driven control framework, in which scenario programs are formulated to compute stabilizing state feedback control relying on a finite set of observations of trajectories with quadratic and sum of squares (SOS) Lyapunov functions. We do not require the exact dynamical model or the switching signal, and as a consequence, we aim at solving uniform stabilization problems, in which the feedback is stabilizing for all possible switching sequences. In order to generalize the solution obtained from trajectories to the actual system, probabilistic guarantees on the obtained quadratic or SOS Lyapunov function are derived in the spirit of scenario optimization. For the quadratic Lyapunov technique, the generalization relies on a geometric analysis argument, while, for the SOS Lyapunov technique, we follow a sensitivity analysis argument. In order to deal with high-dimensional systems, we also develop a parallelized scheme for the proposed approach. We show that, with some modifications, the data-driven quadratic Lyapunov technique can be extended to linear quadratic regulator (LQR) control design. Finally, the proposed data-driven control framework is demonstrated on several numerical examples.
doi_str_mv 10.1109/TAC.2024.3382610
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2024_3382610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10480454</ieee_id><sourcerecordid>3120655730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c160t-d714fd94131f8f37609291395ae1407a8e834db603edf8fe828a65eb623afd403</originalsourceid><addsrcrecordid>eNpNkEtPAjEUhRujiYjuXbho4nqwbzpLMvhKSEgE1k2ZuaNFaLGtEvz1DoGFq5uTfOfc5EPolpIBpaR8mI-qASNMDDjXTFFyhnpUSl0wyfg56hFCdVEyrS7RVUqrLiohaA-9jW22xTi6H_C4Cj7HsMahxQv_6cPO49nO5foDGjxxHmzEs33KsEl4kZx_x7MavI0u4Ok2u437tdkFf40uWrtOcHO6fbR4epxXL8Vk-vxajSZFTRXJRTOkom1KQTltdcuHipSspLyUFqggQ6tBc9EsFeHQdABopq2SsFSM27YRhPfR_XF3G8PXN6RsVuE7-u6l4ZQRJeWQHyhypOoYUorQmm10Gxv3hhJzMGc6c-ZgzpzMdZW7Y8UBwD9caCKk4H85PWk9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120655730</pqid></control><display><type>article</type><title>Data-Driven Control of Unknown Switched Linear Systems Using Scenario Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Zheming ; Berger, Guillaume O. ; Jungers, Raphael M.</creator><creatorcontrib>Wang, Zheming ; Berger, Guillaume O. ; Jungers, Raphael M.</creatorcontrib><description>We tackle uniform state feedback control of switched linear systems under arbitrary switching using scenario optimization. We propose a data-driven control framework, in which scenario programs are formulated to compute stabilizing state feedback control relying on a finite set of observations of trajectories with quadratic and sum of squares (SOS) Lyapunov functions. We do not require the exact dynamical model or the switching signal, and as a consequence, we aim at solving uniform stabilization problems, in which the feedback is stabilizing for all possible switching sequences. In order to generalize the solution obtained from trajectories to the actual system, probabilistic guarantees on the obtained quadratic or SOS Lyapunov function are derived in the spirit of scenario optimization. For the quadratic Lyapunov technique, the generalization relies on a geometric analysis argument, while, for the SOS Lyapunov technique, we follow a sensitivity analysis argument. In order to deal with high-dimensional systems, we also develop a parallelized scheme for the proposed approach. We show that, with some modifications, the data-driven quadratic Lyapunov technique can be extended to linear quadratic regulator (LQR) control design. Finally, the proposed data-driven control framework is demonstrated on several numerical examples.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2024.3382610</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Control systems ; Data-driven control ; Dimensional analysis ; Dynamic models ; Feedback control ; Liapunov functions ; Linear quadratic regulator ; Linear systems ; Optimization ; Probabilistic logic ; scenario optimization ; Sensitivity analysis ; Stability analysis ; Stabilization ; State feedback ; switched linear systems ; Switches ; Switching sequences ; Trajectory optimization</subject><ispartof>IEEE transactions on automatic control, 2024-11, Vol.69 (11), p.7310-7325</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c160t-d714fd94131f8f37609291395ae1407a8e834db603edf8fe828a65eb623afd403</cites><orcidid>0000-0002-7789-0940 ; 0000-0002-5580-0385 ; 0000-0002-0633-8948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10480454$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10480454$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Zheming</creatorcontrib><creatorcontrib>Berger, Guillaume O.</creatorcontrib><creatorcontrib>Jungers, Raphael M.</creatorcontrib><title>Data-Driven Control of Unknown Switched Linear Systems Using Scenario Optimization</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We tackle uniform state feedback control of switched linear systems under arbitrary switching using scenario optimization. We propose a data-driven control framework, in which scenario programs are formulated to compute stabilizing state feedback control relying on a finite set of observations of trajectories with quadratic and sum of squares (SOS) Lyapunov functions. We do not require the exact dynamical model or the switching signal, and as a consequence, we aim at solving uniform stabilization problems, in which the feedback is stabilizing for all possible switching sequences. In order to generalize the solution obtained from trajectories to the actual system, probabilistic guarantees on the obtained quadratic or SOS Lyapunov function are derived in the spirit of scenario optimization. For the quadratic Lyapunov technique, the generalization relies on a geometric analysis argument, while, for the SOS Lyapunov technique, we follow a sensitivity analysis argument. In order to deal with high-dimensional systems, we also develop a parallelized scheme for the proposed approach. We show that, with some modifications, the data-driven quadratic Lyapunov technique can be extended to linear quadratic regulator (LQR) control design. Finally, the proposed data-driven control framework is demonstrated on several numerical examples.</description><subject>Control systems</subject><subject>Data-driven control</subject><subject>Dimensional analysis</subject><subject>Dynamic models</subject><subject>Feedback control</subject><subject>Liapunov functions</subject><subject>Linear quadratic regulator</subject><subject>Linear systems</subject><subject>Optimization</subject><subject>Probabilistic logic</subject><subject>scenario optimization</subject><subject>Sensitivity analysis</subject><subject>Stability analysis</subject><subject>Stabilization</subject><subject>State feedback</subject><subject>switched linear systems</subject><subject>Switches</subject><subject>Switching sequences</subject><subject>Trajectory optimization</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPAjEUhRujiYjuXbho4nqwbzpLMvhKSEgE1k2ZuaNFaLGtEvz1DoGFq5uTfOfc5EPolpIBpaR8mI-qASNMDDjXTFFyhnpUSl0wyfg56hFCdVEyrS7RVUqrLiohaA-9jW22xTi6H_C4Cj7HsMahxQv_6cPO49nO5foDGjxxHmzEs33KsEl4kZx_x7MavI0u4Ok2u437tdkFf40uWrtOcHO6fbR4epxXL8Vk-vxajSZFTRXJRTOkom1KQTltdcuHipSspLyUFqggQ6tBc9EsFeHQdABopq2SsFSM27YRhPfR_XF3G8PXN6RsVuE7-u6l4ZQRJeWQHyhypOoYUorQmm10Gxv3hhJzMGc6c-ZgzpzMdZW7Y8UBwD9caCKk4H85PWk9</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Wang, Zheming</creator><creator>Berger, Guillaume O.</creator><creator>Jungers, Raphael M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7789-0940</orcidid><orcidid>https://orcid.org/0000-0002-5580-0385</orcidid><orcidid>https://orcid.org/0000-0002-0633-8948</orcidid></search><sort><creationdate>202411</creationdate><title>Data-Driven Control of Unknown Switched Linear Systems Using Scenario Optimization</title><author>Wang, Zheming ; Berger, Guillaume O. ; Jungers, Raphael M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c160t-d714fd94131f8f37609291395ae1407a8e834db603edf8fe828a65eb623afd403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Control systems</topic><topic>Data-driven control</topic><topic>Dimensional analysis</topic><topic>Dynamic models</topic><topic>Feedback control</topic><topic>Liapunov functions</topic><topic>Linear quadratic regulator</topic><topic>Linear systems</topic><topic>Optimization</topic><topic>Probabilistic logic</topic><topic>scenario optimization</topic><topic>Sensitivity analysis</topic><topic>Stability analysis</topic><topic>Stabilization</topic><topic>State feedback</topic><topic>switched linear systems</topic><topic>Switches</topic><topic>Switching sequences</topic><topic>Trajectory optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zheming</creatorcontrib><creatorcontrib>Berger, Guillaume O.</creatorcontrib><creatorcontrib>Jungers, Raphael M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Zheming</au><au>Berger, Guillaume O.</au><au>Jungers, Raphael M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Control of Unknown Switched Linear Systems Using Scenario Optimization</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-11</date><risdate>2024</risdate><volume>69</volume><issue>11</issue><spage>7310</spage><epage>7325</epage><pages>7310-7325</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We tackle uniform state feedback control of switched linear systems under arbitrary switching using scenario optimization. We propose a data-driven control framework, in which scenario programs are formulated to compute stabilizing state feedback control relying on a finite set of observations of trajectories with quadratic and sum of squares (SOS) Lyapunov functions. We do not require the exact dynamical model or the switching signal, and as a consequence, we aim at solving uniform stabilization problems, in which the feedback is stabilizing for all possible switching sequences. In order to generalize the solution obtained from trajectories to the actual system, probabilistic guarantees on the obtained quadratic or SOS Lyapunov function are derived in the spirit of scenario optimization. For the quadratic Lyapunov technique, the generalization relies on a geometric analysis argument, while, for the SOS Lyapunov technique, we follow a sensitivity analysis argument. In order to deal with high-dimensional systems, we also develop a parallelized scheme for the proposed approach. We show that, with some modifications, the data-driven quadratic Lyapunov technique can be extended to linear quadratic regulator (LQR) control design. Finally, the proposed data-driven control framework is demonstrated on several numerical examples.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2024.3382610</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7789-0940</orcidid><orcidid>https://orcid.org/0000-0002-5580-0385</orcidid><orcidid>https://orcid.org/0000-0002-0633-8948</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2024-11, Vol.69 (11), p.7310-7325
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_2024_3382610
source IEEE Electronic Library (IEL)
subjects Control systems
Data-driven control
Dimensional analysis
Dynamic models
Feedback control
Liapunov functions
Linear quadratic regulator
Linear systems
Optimization
Probabilistic logic
scenario optimization
Sensitivity analysis
Stability analysis
Stabilization
State feedback
switched linear systems
Switches
Switching sequences
Trajectory optimization
title Data-Driven Control of Unknown Switched Linear Systems Using Scenario Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A39%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Control%20of%20Unknown%20Switched%20Linear%20Systems%20Using%20Scenario%20Optimization&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Wang,%20Zheming&rft.date=2024-11&rft.volume=69&rft.issue=11&rft.spage=7310&rft.epage=7325&rft.pages=7310-7325&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2024.3382610&rft_dat=%3Cproquest_RIE%3E3120655730%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120655730&rft_id=info:pmid/&rft_ieee_id=10480454&rfr_iscdi=true