Stability Analysis of a Discrete-Time Limit Cycle Model Predictive Controller
Recently, a novel discrete-time nonlinear limit cycle model predictive controller for harmonic compensation has been proposed. Its compensating action is achieved by using the dynamics of a supercritical Neimark-Sacker bifurcation normal form at the core of its cost function. This work aims to exten...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2024-09, Vol.69 (9), p.6169-6175 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6175 |
---|---|
container_issue | 9 |
container_start_page | 6169 |
container_title | IEEE transactions on automatic control |
container_volume | 69 |
creator | Yanez, Carlos Cateriano Pangalos, Georg Lichtenberg, Gerwald Saez, Javier Sanchis |
description | Recently, a novel discrete-time nonlinear limit cycle model predictive controller for harmonic compensation has been proposed. Its compensating action is achieved by using the dynamics of a supercritical Neimark-Sacker bifurcation normal form at the core of its cost function. This work aims to extend this approach's applicability by analyzing its stability. This is accomplished by identifying the normal form's region of attraction and final set, which enables the use of LaSalle's invariance principle. These results are then extended to the proposed controller under ideal conditions, i.e., zero-cost solutions with predictable disturbances. For nonideal scenarios, i.e., solutions with unpredictable disturbances and cost restrictions, conditions are developed to ensure that the closed-loop system remains inside the normal form's region of attraction. These findings are tested under nonideal conditions in a power systems application example. The results show successful power quality compensation and a satisfactory resilient behavior of the closed loop within the margins developed during this work. |
doi_str_mv | 10.1109/TAC.2024.3373334 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2024_3373334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10460150</ieee_id><sourcerecordid>3097922471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-89b07075b4b36128caba6e4f1cefe808e240312f832fed62d25a7f228fbe95d63</originalsourceid><addsrcrecordid>eNpNkMFLwzAUxoMoOKd3Dx4CnjuTl7RJj6M6FTYUnOeQti-Q0a0zyYT-93ZsB0-PD37fx-NHyD1nM85Z-bSeVzNgIGdCKCGEvCATnuc6gxzEJZkwxnVWgi6uyU2MmzEWUvIJWX0lW_vOp4HOd7Yboo-0d9TSZx-bgAmztd8iXfqtT7Qamg7pqm-xo58BW98k_4u06ncp9F2H4ZZcOdtFvDvfKflevKyrt2z58fpezZdZA1qlTJc1U0zltaxFwUE3trYFSscbdKiZRpBMcHBagMO2gBZyqxyAdjWWeVuIKXk87e5D_3PAmMymP4Tx_2gEK1UJIBUfKXaimtDHGNCZffBbGwbDmTlKM6M0c5RmztLGysOp4hHxHy4LxnMm_gC7fGd6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097922471</pqid></control><display><type>article</type><title>Stability Analysis of a Discrete-Time Limit Cycle Model Predictive Controller</title><source>IEEE Electronic Library (IEL)</source><creator>Yanez, Carlos Cateriano ; Pangalos, Georg ; Lichtenberg, Gerwald ; Saez, Javier Sanchis</creator><creatorcontrib>Yanez, Carlos Cateriano ; Pangalos, Georg ; Lichtenberg, Gerwald ; Saez, Javier Sanchis</creatorcontrib><description>Recently, a novel discrete-time nonlinear limit cycle model predictive controller for harmonic compensation has been proposed. Its compensating action is achieved by using the dynamics of a supercritical Neimark-Sacker bifurcation normal form at the core of its cost function. This work aims to extend this approach's applicability by analyzing its stability. This is accomplished by identifying the normal form's region of attraction and final set, which enables the use of LaSalle's invariance principle. These results are then extended to the proposed controller under ideal conditions, i.e., zero-cost solutions with predictable disturbances. For nonideal scenarios, i.e., solutions with unpredictable disturbances and cost restrictions, conditions are developed to ensure that the closed-loop system remains inside the normal form's region of attraction. These findings are tested under nonideal conditions in a power systems application example. The results show successful power quality compensation and a satisfactory resilient behavior of the closed loop within the margins developed during this work.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2024.3373334</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bifurcations ; Canonical forms ; Closed loops ; Compensation ; Controllers ; Cost analysis ; Cost function ; Costs ; Disturbances ; Feedback control ; Limit cycles ; Nonlinear control ; Nonlinear dynamics ; nonlinear predictive control ; nonlinear systems ; Oscillators ; Power system stability ; Predictive control ; Predictive models ; Stability analysis ; stability of nonlinear systems ; Trajectory</subject><ispartof>IEEE transactions on automatic control, 2024-09, Vol.69 (9), p.6169-6175</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-89b07075b4b36128caba6e4f1cefe808e240312f832fed62d25a7f228fbe95d63</cites><orcidid>0000-0001-5094-8033 ; 0000-0001-9697-2696 ; 0000-0001-5261-2568 ; 0000-0001-6032-0733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10460150$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Yanez, Carlos Cateriano</creatorcontrib><creatorcontrib>Pangalos, Georg</creatorcontrib><creatorcontrib>Lichtenberg, Gerwald</creatorcontrib><creatorcontrib>Saez, Javier Sanchis</creatorcontrib><title>Stability Analysis of a Discrete-Time Limit Cycle Model Predictive Controller</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Recently, a novel discrete-time nonlinear limit cycle model predictive controller for harmonic compensation has been proposed. Its compensating action is achieved by using the dynamics of a supercritical Neimark-Sacker bifurcation normal form at the core of its cost function. This work aims to extend this approach's applicability by analyzing its stability. This is accomplished by identifying the normal form's region of attraction and final set, which enables the use of LaSalle's invariance principle. These results are then extended to the proposed controller under ideal conditions, i.e., zero-cost solutions with predictable disturbances. For nonideal scenarios, i.e., solutions with unpredictable disturbances and cost restrictions, conditions are developed to ensure that the closed-loop system remains inside the normal form's region of attraction. These findings are tested under nonideal conditions in a power systems application example. The results show successful power quality compensation and a satisfactory resilient behavior of the closed loop within the margins developed during this work.</description><subject>Bifurcations</subject><subject>Canonical forms</subject><subject>Closed loops</subject><subject>Compensation</subject><subject>Controllers</subject><subject>Cost analysis</subject><subject>Cost function</subject><subject>Costs</subject><subject>Disturbances</subject><subject>Feedback control</subject><subject>Limit cycles</subject><subject>Nonlinear control</subject><subject>Nonlinear dynamics</subject><subject>nonlinear predictive control</subject><subject>nonlinear systems</subject><subject>Oscillators</subject><subject>Power system stability</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Stability analysis</subject><subject>stability of nonlinear systems</subject><subject>Trajectory</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkMFLwzAUxoMoOKd3Dx4CnjuTl7RJj6M6FTYUnOeQti-Q0a0zyYT-93ZsB0-PD37fx-NHyD1nM85Z-bSeVzNgIGdCKCGEvCATnuc6gxzEJZkwxnVWgi6uyU2MmzEWUvIJWX0lW_vOp4HOd7Yboo-0d9TSZx-bgAmztd8iXfqtT7Qamg7pqm-xo58BW98k_4u06ncp9F2H4ZZcOdtFvDvfKflevKyrt2z58fpezZdZA1qlTJc1U0zltaxFwUE3trYFSscbdKiZRpBMcHBagMO2gBZyqxyAdjWWeVuIKXk87e5D_3PAmMymP4Tx_2gEK1UJIBUfKXaimtDHGNCZffBbGwbDmTlKM6M0c5RmztLGysOp4hHxHy4LxnMm_gC7fGd6</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Yanez, Carlos Cateriano</creator><creator>Pangalos, Georg</creator><creator>Lichtenberg, Gerwald</creator><creator>Saez, Javier Sanchis</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5094-8033</orcidid><orcidid>https://orcid.org/0000-0001-9697-2696</orcidid><orcidid>https://orcid.org/0000-0001-5261-2568</orcidid><orcidid>https://orcid.org/0000-0001-6032-0733</orcidid></search><sort><creationdate>20240901</creationdate><title>Stability Analysis of a Discrete-Time Limit Cycle Model Predictive Controller</title><author>Yanez, Carlos Cateriano ; Pangalos, Georg ; Lichtenberg, Gerwald ; Saez, Javier Sanchis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-89b07075b4b36128caba6e4f1cefe808e240312f832fed62d25a7f228fbe95d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bifurcations</topic><topic>Canonical forms</topic><topic>Closed loops</topic><topic>Compensation</topic><topic>Controllers</topic><topic>Cost analysis</topic><topic>Cost function</topic><topic>Costs</topic><topic>Disturbances</topic><topic>Feedback control</topic><topic>Limit cycles</topic><topic>Nonlinear control</topic><topic>Nonlinear dynamics</topic><topic>nonlinear predictive control</topic><topic>nonlinear systems</topic><topic>Oscillators</topic><topic>Power system stability</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Stability analysis</topic><topic>stability of nonlinear systems</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yanez, Carlos Cateriano</creatorcontrib><creatorcontrib>Pangalos, Georg</creatorcontrib><creatorcontrib>Lichtenberg, Gerwald</creatorcontrib><creatorcontrib>Saez, Javier Sanchis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yanez, Carlos Cateriano</au><au>Pangalos, Georg</au><au>Lichtenberg, Gerwald</au><au>Saez, Javier Sanchis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability Analysis of a Discrete-Time Limit Cycle Model Predictive Controller</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>69</volume><issue>9</issue><spage>6169</spage><epage>6175</epage><pages>6169-6175</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Recently, a novel discrete-time nonlinear limit cycle model predictive controller for harmonic compensation has been proposed. Its compensating action is achieved by using the dynamics of a supercritical Neimark-Sacker bifurcation normal form at the core of its cost function. This work aims to extend this approach's applicability by analyzing its stability. This is accomplished by identifying the normal form's region of attraction and final set, which enables the use of LaSalle's invariance principle. These results are then extended to the proposed controller under ideal conditions, i.e., zero-cost solutions with predictable disturbances. For nonideal scenarios, i.e., solutions with unpredictable disturbances and cost restrictions, conditions are developed to ensure that the closed-loop system remains inside the normal form's region of attraction. These findings are tested under nonideal conditions in a power systems application example. The results show successful power quality compensation and a satisfactory resilient behavior of the closed loop within the margins developed during this work.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2024.3373334</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5094-8033</orcidid><orcidid>https://orcid.org/0000-0001-9697-2696</orcidid><orcidid>https://orcid.org/0000-0001-5261-2568</orcidid><orcidid>https://orcid.org/0000-0001-6032-0733</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2024-09, Vol.69 (9), p.6169-6175 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAC_2024_3373334 |
source | IEEE Electronic Library (IEL) |
subjects | Bifurcations Canonical forms Closed loops Compensation Controllers Cost analysis Cost function Costs Disturbances Feedback control Limit cycles Nonlinear control Nonlinear dynamics nonlinear predictive control nonlinear systems Oscillators Power system stability Predictive control Predictive models Stability analysis stability of nonlinear systems Trajectory |
title | Stability Analysis of a Discrete-Time Limit Cycle Model Predictive Controller |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A32%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20Analysis%20of%20a%20Discrete-Time%20Limit%20Cycle%20Model%20Predictive%20Controller&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Yanez,%20Carlos%20Cateriano&rft.date=2024-09-01&rft.volume=69&rft.issue=9&rft.spage=6169&rft.epage=6175&rft.pages=6169-6175&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2024.3373334&rft_dat=%3Cproquest_cross%3E3097922471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097922471&rft_id=info:pmid/&rft_ieee_id=10460150&rfr_iscdi=true |