Stability Analysis of a Discrete-Time Limit Cycle Model Predictive Controller

Recently, a novel discrete-time nonlinear limit cycle model predictive controller for harmonic compensation has been proposed. Its compensating action is achieved by using the dynamics of a supercritical Neimark-Sacker bifurcation normal form at the core of its cost function. This work aims to exten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2024-09, Vol.69 (9), p.6169-6175
Hauptverfasser: Yanez, Carlos Cateriano, Pangalos, Georg, Lichtenberg, Gerwald, Saez, Javier Sanchis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6175
container_issue 9
container_start_page 6169
container_title IEEE transactions on automatic control
container_volume 69
creator Yanez, Carlos Cateriano
Pangalos, Georg
Lichtenberg, Gerwald
Saez, Javier Sanchis
description Recently, a novel discrete-time nonlinear limit cycle model predictive controller for harmonic compensation has been proposed. Its compensating action is achieved by using the dynamics of a supercritical Neimark-Sacker bifurcation normal form at the core of its cost function. This work aims to extend this approach's applicability by analyzing its stability. This is accomplished by identifying the normal form's region of attraction and final set, which enables the use of LaSalle's invariance principle. These results are then extended to the proposed controller under ideal conditions, i.e., zero-cost solutions with predictable disturbances. For nonideal scenarios, i.e., solutions with unpredictable disturbances and cost restrictions, conditions are developed to ensure that the closed-loop system remains inside the normal form's region of attraction. These findings are tested under nonideal conditions in a power systems application example. The results show successful power quality compensation and a satisfactory resilient behavior of the closed loop within the margins developed during this work.
doi_str_mv 10.1109/TAC.2024.3373334
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2024_3373334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10460150</ieee_id><sourcerecordid>3097922471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-89b07075b4b36128caba6e4f1cefe808e240312f832fed62d25a7f228fbe95d63</originalsourceid><addsrcrecordid>eNpNkMFLwzAUxoMoOKd3Dx4CnjuTl7RJj6M6FTYUnOeQti-Q0a0zyYT-93ZsB0-PD37fx-NHyD1nM85Z-bSeVzNgIGdCKCGEvCATnuc6gxzEJZkwxnVWgi6uyU2MmzEWUvIJWX0lW_vOp4HOd7Yboo-0d9TSZx-bgAmztd8iXfqtT7Qamg7pqm-xo58BW98k_4u06ncp9F2H4ZZcOdtFvDvfKflevKyrt2z58fpezZdZA1qlTJc1U0zltaxFwUE3trYFSscbdKiZRpBMcHBagMO2gBZyqxyAdjWWeVuIKXk87e5D_3PAmMymP4Tx_2gEK1UJIBUfKXaimtDHGNCZffBbGwbDmTlKM6M0c5RmztLGysOp4hHxHy4LxnMm_gC7fGd6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097922471</pqid></control><display><type>article</type><title>Stability Analysis of a Discrete-Time Limit Cycle Model Predictive Controller</title><source>IEEE Electronic Library (IEL)</source><creator>Yanez, Carlos Cateriano ; Pangalos, Georg ; Lichtenberg, Gerwald ; Saez, Javier Sanchis</creator><creatorcontrib>Yanez, Carlos Cateriano ; Pangalos, Georg ; Lichtenberg, Gerwald ; Saez, Javier Sanchis</creatorcontrib><description>Recently, a novel discrete-time nonlinear limit cycle model predictive controller for harmonic compensation has been proposed. Its compensating action is achieved by using the dynamics of a supercritical Neimark-Sacker bifurcation normal form at the core of its cost function. This work aims to extend this approach's applicability by analyzing its stability. This is accomplished by identifying the normal form's region of attraction and final set, which enables the use of LaSalle's invariance principle. These results are then extended to the proposed controller under ideal conditions, i.e., zero-cost solutions with predictable disturbances. For nonideal scenarios, i.e., solutions with unpredictable disturbances and cost restrictions, conditions are developed to ensure that the closed-loop system remains inside the normal form's region of attraction. These findings are tested under nonideal conditions in a power systems application example. The results show successful power quality compensation and a satisfactory resilient behavior of the closed loop within the margins developed during this work.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2024.3373334</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bifurcations ; Canonical forms ; Closed loops ; Compensation ; Controllers ; Cost analysis ; Cost function ; Costs ; Disturbances ; Feedback control ; Limit cycles ; Nonlinear control ; Nonlinear dynamics ; nonlinear predictive control ; nonlinear systems ; Oscillators ; Power system stability ; Predictive control ; Predictive models ; Stability analysis ; stability of nonlinear systems ; Trajectory</subject><ispartof>IEEE transactions on automatic control, 2024-09, Vol.69 (9), p.6169-6175</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-89b07075b4b36128caba6e4f1cefe808e240312f832fed62d25a7f228fbe95d63</cites><orcidid>0000-0001-5094-8033 ; 0000-0001-9697-2696 ; 0000-0001-5261-2568 ; 0000-0001-6032-0733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10460150$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Yanez, Carlos Cateriano</creatorcontrib><creatorcontrib>Pangalos, Georg</creatorcontrib><creatorcontrib>Lichtenberg, Gerwald</creatorcontrib><creatorcontrib>Saez, Javier Sanchis</creatorcontrib><title>Stability Analysis of a Discrete-Time Limit Cycle Model Predictive Controller</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Recently, a novel discrete-time nonlinear limit cycle model predictive controller for harmonic compensation has been proposed. Its compensating action is achieved by using the dynamics of a supercritical Neimark-Sacker bifurcation normal form at the core of its cost function. This work aims to extend this approach's applicability by analyzing its stability. This is accomplished by identifying the normal form's region of attraction and final set, which enables the use of LaSalle's invariance principle. These results are then extended to the proposed controller under ideal conditions, i.e., zero-cost solutions with predictable disturbances. For nonideal scenarios, i.e., solutions with unpredictable disturbances and cost restrictions, conditions are developed to ensure that the closed-loop system remains inside the normal form's region of attraction. These findings are tested under nonideal conditions in a power systems application example. The results show successful power quality compensation and a satisfactory resilient behavior of the closed loop within the margins developed during this work.</description><subject>Bifurcations</subject><subject>Canonical forms</subject><subject>Closed loops</subject><subject>Compensation</subject><subject>Controllers</subject><subject>Cost analysis</subject><subject>Cost function</subject><subject>Costs</subject><subject>Disturbances</subject><subject>Feedback control</subject><subject>Limit cycles</subject><subject>Nonlinear control</subject><subject>Nonlinear dynamics</subject><subject>nonlinear predictive control</subject><subject>nonlinear systems</subject><subject>Oscillators</subject><subject>Power system stability</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Stability analysis</subject><subject>stability of nonlinear systems</subject><subject>Trajectory</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkMFLwzAUxoMoOKd3Dx4CnjuTl7RJj6M6FTYUnOeQti-Q0a0zyYT-93ZsB0-PD37fx-NHyD1nM85Z-bSeVzNgIGdCKCGEvCATnuc6gxzEJZkwxnVWgi6uyU2MmzEWUvIJWX0lW_vOp4HOd7Yboo-0d9TSZx-bgAmztd8iXfqtT7Qamg7pqm-xo58BW98k_4u06ncp9F2H4ZZcOdtFvDvfKflevKyrt2z58fpezZdZA1qlTJc1U0zltaxFwUE3trYFSscbdKiZRpBMcHBagMO2gBZyqxyAdjWWeVuIKXk87e5D_3PAmMymP4Tx_2gEK1UJIBUfKXaimtDHGNCZffBbGwbDmTlKM6M0c5RmztLGysOp4hHxHy4LxnMm_gC7fGd6</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Yanez, Carlos Cateriano</creator><creator>Pangalos, Georg</creator><creator>Lichtenberg, Gerwald</creator><creator>Saez, Javier Sanchis</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5094-8033</orcidid><orcidid>https://orcid.org/0000-0001-9697-2696</orcidid><orcidid>https://orcid.org/0000-0001-5261-2568</orcidid><orcidid>https://orcid.org/0000-0001-6032-0733</orcidid></search><sort><creationdate>20240901</creationdate><title>Stability Analysis of a Discrete-Time Limit Cycle Model Predictive Controller</title><author>Yanez, Carlos Cateriano ; Pangalos, Georg ; Lichtenberg, Gerwald ; Saez, Javier Sanchis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-89b07075b4b36128caba6e4f1cefe808e240312f832fed62d25a7f228fbe95d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bifurcations</topic><topic>Canonical forms</topic><topic>Closed loops</topic><topic>Compensation</topic><topic>Controllers</topic><topic>Cost analysis</topic><topic>Cost function</topic><topic>Costs</topic><topic>Disturbances</topic><topic>Feedback control</topic><topic>Limit cycles</topic><topic>Nonlinear control</topic><topic>Nonlinear dynamics</topic><topic>nonlinear predictive control</topic><topic>nonlinear systems</topic><topic>Oscillators</topic><topic>Power system stability</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Stability analysis</topic><topic>stability of nonlinear systems</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yanez, Carlos Cateriano</creatorcontrib><creatorcontrib>Pangalos, Georg</creatorcontrib><creatorcontrib>Lichtenberg, Gerwald</creatorcontrib><creatorcontrib>Saez, Javier Sanchis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yanez, Carlos Cateriano</au><au>Pangalos, Georg</au><au>Lichtenberg, Gerwald</au><au>Saez, Javier Sanchis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability Analysis of a Discrete-Time Limit Cycle Model Predictive Controller</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>69</volume><issue>9</issue><spage>6169</spage><epage>6175</epage><pages>6169-6175</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Recently, a novel discrete-time nonlinear limit cycle model predictive controller for harmonic compensation has been proposed. Its compensating action is achieved by using the dynamics of a supercritical Neimark-Sacker bifurcation normal form at the core of its cost function. This work aims to extend this approach's applicability by analyzing its stability. This is accomplished by identifying the normal form's region of attraction and final set, which enables the use of LaSalle's invariance principle. These results are then extended to the proposed controller under ideal conditions, i.e., zero-cost solutions with predictable disturbances. For nonideal scenarios, i.e., solutions with unpredictable disturbances and cost restrictions, conditions are developed to ensure that the closed-loop system remains inside the normal form's region of attraction. These findings are tested under nonideal conditions in a power systems application example. The results show successful power quality compensation and a satisfactory resilient behavior of the closed loop within the margins developed during this work.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2024.3373334</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5094-8033</orcidid><orcidid>https://orcid.org/0000-0001-9697-2696</orcidid><orcidid>https://orcid.org/0000-0001-5261-2568</orcidid><orcidid>https://orcid.org/0000-0001-6032-0733</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2024-09, Vol.69 (9), p.6169-6175
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_2024_3373334
source IEEE Electronic Library (IEL)
subjects Bifurcations
Canonical forms
Closed loops
Compensation
Controllers
Cost analysis
Cost function
Costs
Disturbances
Feedback control
Limit cycles
Nonlinear control
Nonlinear dynamics
nonlinear predictive control
nonlinear systems
Oscillators
Power system stability
Predictive control
Predictive models
Stability analysis
stability of nonlinear systems
Trajectory
title Stability Analysis of a Discrete-Time Limit Cycle Model Predictive Controller
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A32%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20Analysis%20of%20a%20Discrete-Time%20Limit%20Cycle%20Model%20Predictive%20Controller&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Yanez,%20Carlos%20Cateriano&rft.date=2024-09-01&rft.volume=69&rft.issue=9&rft.spage=6169&rft.epage=6175&rft.pages=6169-6175&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2024.3373334&rft_dat=%3Cproquest_cross%3E3097922471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097922471&rft_id=info:pmid/&rft_ieee_id=10460150&rfr_iscdi=true