Strong Consistency and Rate of Convergence of Switched Least Squares System Identification for Autonomous Markov Jump Linear Systems

In this article, we investigate the problem of system identification for autonomous Markov jump linear systems (MJS) with complete state observations. We propose switched least squares method for identification of MJS, show that this method is strongly consistent, and derive data-dependent and data-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2024-06, Vol.69 (6), p.3952-3959
Hauptverfasser: Sayedana, Borna, Afshari, Mohammad, Caines, Peter E., Mahajan, Aditya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3959
container_issue 6
container_start_page 3952
container_title IEEE transactions on automatic control
container_volume 69
creator Sayedana, Borna
Afshari, Mohammad
Caines, Peter E.
Mahajan, Aditya
description In this article, we investigate the problem of system identification for autonomous Markov jump linear systems (MJS) with complete state observations. We propose switched least squares method for identification of MJS, show that this method is strongly consistent, and derive data-dependent and data-independent rates of convergence. In particular, our data-independent rate of convergence shows that, almost surely, the system identification error is \mathcal {O}(\sqrt{\log (T)/T}) where T is the time horizon. These results show that the switched least squares method for MJS has the same rate of convergence as the least squares method for autonomous linear systems. We derive our results by imposing a general stability assumption on the model called stability in the average sense. We show that stability in the average sense is a weaker form of stability compared with the stability assumptions commonly imposed in the literature. We present numerical examples to illustrate the performance of the proposed method.
doi_str_mv 10.1109/TAC.2024.3351806
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2024_3351806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10384727</ieee_id><sourcerecordid>3061462469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-313c9b231e726cafb6c62f6f602ce31a5aa0e5a99fc5ac680980309976b128823</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYjePXho4nmxH7vd9kiIHxiMiYvnTSlTXJQW2i6Guz_cRTh4mryT95lJHoSuKRlQStTddDgaMMLyAecFlUScoB4tCpmxgvFT1COEykwxKc7RRYzLLoo8pz30U6Xg3QKPvItNTODMDms3x286AfZ2v99CWHT7v1h9N8l8wBxPQMeEq02rA0Rc7Tp0hcdzcKmxjdGp8Q5bH_CwTd75lW8jftHh02_xc7ta40njQIcjFy_RmdVfEa6Os4_eH-6no6ds8vo4Hg0nmWF5kTJOuVEzximUTBhtZ8IIZoUVhBngVBdaEyi0UtYU2ghJlCScKFWKGWVSMt5Ht4e76-A3LcRUL30bXPey5kTQXLBcqK5FDi0TfIwBbL0OzUqHXU1JvXddd67rvev66LpDbg5IAwD_6lzmJSv5L_5De_4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061462469</pqid></control><display><type>article</type><title>Strong Consistency and Rate of Convergence of Switched Least Squares System Identification for Autonomous Markov Jump Linear Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Sayedana, Borna ; Afshari, Mohammad ; Caines, Peter E. ; Mahajan, Aditya</creator><creatorcontrib>Sayedana, Borna ; Afshari, Mohammad ; Caines, Peter E. ; Mahajan, Aditya</creatorcontrib><description><![CDATA[In this article, we investigate the problem of system identification for autonomous Markov jump linear systems (MJS) with complete state observations. We propose switched least squares method for identification of MJS, show that this method is strongly consistent, and derive data-dependent and data-independent rates of convergence. In particular, our data-independent rate of convergence shows that, almost surely, the system identification error is <inline-formula><tex-math notation="LaTeX">\mathcal {O}(\sqrt{\log (T)/T})</tex-math></inline-formula> where <inline-formula><tex-math notation="LaTeX">T</tex-math></inline-formula> is the time horizon. These results show that the switched least squares method for MJS has the same rate of convergence as the least squares method for autonomous linear systems. We derive our results by imposing a general stability assumption on the model called stability in the average sense. We show that stability in the average sense is a weaker form of stability compared with the stability assumptions commonly imposed in the literature. We present numerical examples to illustrate the performance of the proposed method.]]></description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2024.3351806</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymptotic stability ; Autonomous systems ; Convergence ; Least mean squares methods ; Least squares method ; Linear systems ; Numerical stability ; parameter estimation ; Stability ; Stability analysis ; statistical learning ; Switches ; switching systems ; System identification</subject><ispartof>IEEE transactions on automatic control, 2024-06, Vol.69 (6), p.3952-3959</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-313c9b231e726cafb6c62f6f602ce31a5aa0e5a99fc5ac680980309976b128823</cites><orcidid>0000-0002-5248-9456 ; 0000-0001-8125-1191 ; 0000-0003-0425-1491 ; 0000-0003-1347-7089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10384727$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10384727$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sayedana, Borna</creatorcontrib><creatorcontrib>Afshari, Mohammad</creatorcontrib><creatorcontrib>Caines, Peter E.</creatorcontrib><creatorcontrib>Mahajan, Aditya</creatorcontrib><title>Strong Consistency and Rate of Convergence of Switched Least Squares System Identification for Autonomous Markov Jump Linear Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description><![CDATA[In this article, we investigate the problem of system identification for autonomous Markov jump linear systems (MJS) with complete state observations. We propose switched least squares method for identification of MJS, show that this method is strongly consistent, and derive data-dependent and data-independent rates of convergence. In particular, our data-independent rate of convergence shows that, almost surely, the system identification error is <inline-formula><tex-math notation="LaTeX">\mathcal {O}(\sqrt{\log (T)/T})</tex-math></inline-formula> where <inline-formula><tex-math notation="LaTeX">T</tex-math></inline-formula> is the time horizon. These results show that the switched least squares method for MJS has the same rate of convergence as the least squares method for autonomous linear systems. We derive our results by imposing a general stability assumption on the model called stability in the average sense. We show that stability in the average sense is a weaker form of stability compared with the stability assumptions commonly imposed in the literature. We present numerical examples to illustrate the performance of the proposed method.]]></description><subject>Asymptotic stability</subject><subject>Autonomous systems</subject><subject>Convergence</subject><subject>Least mean squares methods</subject><subject>Least squares method</subject><subject>Linear systems</subject><subject>Numerical stability</subject><subject>parameter estimation</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>statistical learning</subject><subject>Switches</subject><subject>switching systems</subject><subject>System identification</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEQhhujiYjePXho4nmxH7vd9kiIHxiMiYvnTSlTXJQW2i6Guz_cRTh4mryT95lJHoSuKRlQStTddDgaMMLyAecFlUScoB4tCpmxgvFT1COEykwxKc7RRYzLLoo8pz30U6Xg3QKPvItNTODMDms3x286AfZ2v99CWHT7v1h9N8l8wBxPQMeEq02rA0Rc7Tp0hcdzcKmxjdGp8Q5bH_CwTd75lW8jftHh02_xc7ta40njQIcjFy_RmdVfEa6Os4_eH-6no6ds8vo4Hg0nmWF5kTJOuVEzximUTBhtZ8IIZoUVhBngVBdaEyi0UtYU2ghJlCScKFWKGWVSMt5Ht4e76-A3LcRUL30bXPey5kTQXLBcqK5FDi0TfIwBbL0OzUqHXU1JvXddd67rvev66LpDbg5IAwD_6lzmJSv5L_5De_4</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Sayedana, Borna</creator><creator>Afshari, Mohammad</creator><creator>Caines, Peter E.</creator><creator>Mahajan, Aditya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5248-9456</orcidid><orcidid>https://orcid.org/0000-0001-8125-1191</orcidid><orcidid>https://orcid.org/0000-0003-0425-1491</orcidid><orcidid>https://orcid.org/0000-0003-1347-7089</orcidid></search><sort><creationdate>20240601</creationdate><title>Strong Consistency and Rate of Convergence of Switched Least Squares System Identification for Autonomous Markov Jump Linear Systems</title><author>Sayedana, Borna ; Afshari, Mohammad ; Caines, Peter E. ; Mahajan, Aditya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-313c9b231e726cafb6c62f6f602ce31a5aa0e5a99fc5ac680980309976b128823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic stability</topic><topic>Autonomous systems</topic><topic>Convergence</topic><topic>Least mean squares methods</topic><topic>Least squares method</topic><topic>Linear systems</topic><topic>Numerical stability</topic><topic>parameter estimation</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>statistical learning</topic><topic>Switches</topic><topic>switching systems</topic><topic>System identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sayedana, Borna</creatorcontrib><creatorcontrib>Afshari, Mohammad</creatorcontrib><creatorcontrib>Caines, Peter E.</creatorcontrib><creatorcontrib>Mahajan, Aditya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sayedana, Borna</au><au>Afshari, Mohammad</au><au>Caines, Peter E.</au><au>Mahajan, Aditya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong Consistency and Rate of Convergence of Switched Least Squares System Identification for Autonomous Markov Jump Linear Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>69</volume><issue>6</issue><spage>3952</spage><epage>3959</epage><pages>3952-3959</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract><![CDATA[In this article, we investigate the problem of system identification for autonomous Markov jump linear systems (MJS) with complete state observations. We propose switched least squares method for identification of MJS, show that this method is strongly consistent, and derive data-dependent and data-independent rates of convergence. In particular, our data-independent rate of convergence shows that, almost surely, the system identification error is <inline-formula><tex-math notation="LaTeX">\mathcal {O}(\sqrt{\log (T)/T})</tex-math></inline-formula> where <inline-formula><tex-math notation="LaTeX">T</tex-math></inline-formula> is the time horizon. These results show that the switched least squares method for MJS has the same rate of convergence as the least squares method for autonomous linear systems. We derive our results by imposing a general stability assumption on the model called stability in the average sense. We show that stability in the average sense is a weaker form of stability compared with the stability assumptions commonly imposed in the literature. We present numerical examples to illustrate the performance of the proposed method.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2024.3351806</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5248-9456</orcidid><orcidid>https://orcid.org/0000-0001-8125-1191</orcidid><orcidid>https://orcid.org/0000-0003-0425-1491</orcidid><orcidid>https://orcid.org/0000-0003-1347-7089</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2024-06, Vol.69 (6), p.3952-3959
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_2024_3351806
source IEEE Electronic Library (IEL)
subjects Asymptotic stability
Autonomous systems
Convergence
Least mean squares methods
Least squares method
Linear systems
Numerical stability
parameter estimation
Stability
Stability analysis
statistical learning
Switches
switching systems
System identification
title Strong Consistency and Rate of Convergence of Switched Least Squares System Identification for Autonomous Markov Jump Linear Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A40%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20Consistency%20and%20Rate%20of%20Convergence%20of%20Switched%20Least%20Squares%20System%20Identification%20for%20Autonomous%20Markov%20Jump%20Linear%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Sayedana,%20Borna&rft.date=2024-06-01&rft.volume=69&rft.issue=6&rft.spage=3952&rft.epage=3959&rft.pages=3952-3959&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2024.3351806&rft_dat=%3Cproquest_RIE%3E3061462469%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3061462469&rft_id=info:pmid/&rft_ieee_id=10384727&rfr_iscdi=true