Strong Consistency and Rate of Convergence of Switched Least Squares System Identification for Autonomous Markov Jump Linear Systems
In this article, we investigate the problem of system identification for autonomous Markov jump linear systems (MJS) with complete state observations. We propose switched least squares method for identification of MJS, show that this method is strongly consistent, and derive data-dependent and data-...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2024-06, Vol.69 (6), p.3952-3959 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3959 |
---|---|
container_issue | 6 |
container_start_page | 3952 |
container_title | IEEE transactions on automatic control |
container_volume | 69 |
creator | Sayedana, Borna Afshari, Mohammad Caines, Peter E. Mahajan, Aditya |
description | In this article, we investigate the problem of system identification for autonomous Markov jump linear systems (MJS) with complete state observations. We propose switched least squares method for identification of MJS, show that this method is strongly consistent, and derive data-dependent and data-independent rates of convergence. In particular, our data-independent rate of convergence shows that, almost surely, the system identification error is \mathcal {O}(\sqrt{\log (T)/T}) where T is the time horizon. These results show that the switched least squares method for MJS has the same rate of convergence as the least squares method for autonomous linear systems. We derive our results by imposing a general stability assumption on the model called stability in the average sense. We show that stability in the average sense is a weaker form of stability compared with the stability assumptions commonly imposed in the literature. We present numerical examples to illustrate the performance of the proposed method. |
doi_str_mv | 10.1109/TAC.2024.3351806 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2024_3351806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10384727</ieee_id><sourcerecordid>3061462469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-313c9b231e726cafb6c62f6f602ce31a5aa0e5a99fc5ac680980309976b128823</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYjePXho4nmxH7vd9kiIHxiMiYvnTSlTXJQW2i6Guz_cRTh4mryT95lJHoSuKRlQStTddDgaMMLyAecFlUScoB4tCpmxgvFT1COEykwxKc7RRYzLLoo8pz30U6Xg3QKPvItNTODMDms3x286AfZ2v99CWHT7v1h9N8l8wBxPQMeEq02rA0Rc7Tp0hcdzcKmxjdGp8Q5bH_CwTd75lW8jftHh02_xc7ta40njQIcjFy_RmdVfEa6Os4_eH-6no6ds8vo4Hg0nmWF5kTJOuVEzximUTBhtZ8IIZoUVhBngVBdaEyi0UtYU2ghJlCScKFWKGWVSMt5Ht4e76-A3LcRUL30bXPey5kTQXLBcqK5FDi0TfIwBbL0OzUqHXU1JvXddd67rvev66LpDbg5IAwD_6lzmJSv5L_5De_4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061462469</pqid></control><display><type>article</type><title>Strong Consistency and Rate of Convergence of Switched Least Squares System Identification for Autonomous Markov Jump Linear Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Sayedana, Borna ; Afshari, Mohammad ; Caines, Peter E. ; Mahajan, Aditya</creator><creatorcontrib>Sayedana, Borna ; Afshari, Mohammad ; Caines, Peter E. ; Mahajan, Aditya</creatorcontrib><description><![CDATA[In this article, we investigate the problem of system identification for autonomous Markov jump linear systems (MJS) with complete state observations. We propose switched least squares method for identification of MJS, show that this method is strongly consistent, and derive data-dependent and data-independent rates of convergence. In particular, our data-independent rate of convergence shows that, almost surely, the system identification error is <inline-formula><tex-math notation="LaTeX">\mathcal {O}(\sqrt{\log (T)/T})</tex-math></inline-formula> where <inline-formula><tex-math notation="LaTeX">T</tex-math></inline-formula> is the time horizon. These results show that the switched least squares method for MJS has the same rate of convergence as the least squares method for autonomous linear systems. We derive our results by imposing a general stability assumption on the model called stability in the average sense. We show that stability in the average sense is a weaker form of stability compared with the stability assumptions commonly imposed in the literature. We present numerical examples to illustrate the performance of the proposed method.]]></description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2024.3351806</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymptotic stability ; Autonomous systems ; Convergence ; Least mean squares methods ; Least squares method ; Linear systems ; Numerical stability ; parameter estimation ; Stability ; Stability analysis ; statistical learning ; Switches ; switching systems ; System identification</subject><ispartof>IEEE transactions on automatic control, 2024-06, Vol.69 (6), p.3952-3959</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-313c9b231e726cafb6c62f6f602ce31a5aa0e5a99fc5ac680980309976b128823</cites><orcidid>0000-0002-5248-9456 ; 0000-0001-8125-1191 ; 0000-0003-0425-1491 ; 0000-0003-1347-7089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10384727$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10384727$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sayedana, Borna</creatorcontrib><creatorcontrib>Afshari, Mohammad</creatorcontrib><creatorcontrib>Caines, Peter E.</creatorcontrib><creatorcontrib>Mahajan, Aditya</creatorcontrib><title>Strong Consistency and Rate of Convergence of Switched Least Squares System Identification for Autonomous Markov Jump Linear Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description><![CDATA[In this article, we investigate the problem of system identification for autonomous Markov jump linear systems (MJS) with complete state observations. We propose switched least squares method for identification of MJS, show that this method is strongly consistent, and derive data-dependent and data-independent rates of convergence. In particular, our data-independent rate of convergence shows that, almost surely, the system identification error is <inline-formula><tex-math notation="LaTeX">\mathcal {O}(\sqrt{\log (T)/T})</tex-math></inline-formula> where <inline-formula><tex-math notation="LaTeX">T</tex-math></inline-formula> is the time horizon. These results show that the switched least squares method for MJS has the same rate of convergence as the least squares method for autonomous linear systems. We derive our results by imposing a general stability assumption on the model called stability in the average sense. We show that stability in the average sense is a weaker form of stability compared with the stability assumptions commonly imposed in the literature. We present numerical examples to illustrate the performance of the proposed method.]]></description><subject>Asymptotic stability</subject><subject>Autonomous systems</subject><subject>Convergence</subject><subject>Least mean squares methods</subject><subject>Least squares method</subject><subject>Linear systems</subject><subject>Numerical stability</subject><subject>parameter estimation</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>statistical learning</subject><subject>Switches</subject><subject>switching systems</subject><subject>System identification</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEQhhujiYjePXho4nmxH7vd9kiIHxiMiYvnTSlTXJQW2i6Guz_cRTh4mryT95lJHoSuKRlQStTddDgaMMLyAecFlUScoB4tCpmxgvFT1COEykwxKc7RRYzLLoo8pz30U6Xg3QKPvItNTODMDms3x286AfZ2v99CWHT7v1h9N8l8wBxPQMeEq02rA0Rc7Tp0hcdzcKmxjdGp8Q5bH_CwTd75lW8jftHh02_xc7ta40njQIcjFy_RmdVfEa6Os4_eH-6no6ds8vo4Hg0nmWF5kTJOuVEzximUTBhtZ8IIZoUVhBngVBdaEyi0UtYU2ghJlCScKFWKGWVSMt5Ht4e76-A3LcRUL30bXPey5kTQXLBcqK5FDi0TfIwBbL0OzUqHXU1JvXddd67rvev66LpDbg5IAwD_6lzmJSv5L_5De_4</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Sayedana, Borna</creator><creator>Afshari, Mohammad</creator><creator>Caines, Peter E.</creator><creator>Mahajan, Aditya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5248-9456</orcidid><orcidid>https://orcid.org/0000-0001-8125-1191</orcidid><orcidid>https://orcid.org/0000-0003-0425-1491</orcidid><orcidid>https://orcid.org/0000-0003-1347-7089</orcidid></search><sort><creationdate>20240601</creationdate><title>Strong Consistency and Rate of Convergence of Switched Least Squares System Identification for Autonomous Markov Jump Linear Systems</title><author>Sayedana, Borna ; Afshari, Mohammad ; Caines, Peter E. ; Mahajan, Aditya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-313c9b231e726cafb6c62f6f602ce31a5aa0e5a99fc5ac680980309976b128823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic stability</topic><topic>Autonomous systems</topic><topic>Convergence</topic><topic>Least mean squares methods</topic><topic>Least squares method</topic><topic>Linear systems</topic><topic>Numerical stability</topic><topic>parameter estimation</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>statistical learning</topic><topic>Switches</topic><topic>switching systems</topic><topic>System identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sayedana, Borna</creatorcontrib><creatorcontrib>Afshari, Mohammad</creatorcontrib><creatorcontrib>Caines, Peter E.</creatorcontrib><creatorcontrib>Mahajan, Aditya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sayedana, Borna</au><au>Afshari, Mohammad</au><au>Caines, Peter E.</au><au>Mahajan, Aditya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong Consistency and Rate of Convergence of Switched Least Squares System Identification for Autonomous Markov Jump Linear Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>69</volume><issue>6</issue><spage>3952</spage><epage>3959</epage><pages>3952-3959</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract><![CDATA[In this article, we investigate the problem of system identification for autonomous Markov jump linear systems (MJS) with complete state observations. We propose switched least squares method for identification of MJS, show that this method is strongly consistent, and derive data-dependent and data-independent rates of convergence. In particular, our data-independent rate of convergence shows that, almost surely, the system identification error is <inline-formula><tex-math notation="LaTeX">\mathcal {O}(\sqrt{\log (T)/T})</tex-math></inline-formula> where <inline-formula><tex-math notation="LaTeX">T</tex-math></inline-formula> is the time horizon. These results show that the switched least squares method for MJS has the same rate of convergence as the least squares method for autonomous linear systems. We derive our results by imposing a general stability assumption on the model called stability in the average sense. We show that stability in the average sense is a weaker form of stability compared with the stability assumptions commonly imposed in the literature. We present numerical examples to illustrate the performance of the proposed method.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2024.3351806</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5248-9456</orcidid><orcidid>https://orcid.org/0000-0001-8125-1191</orcidid><orcidid>https://orcid.org/0000-0003-0425-1491</orcidid><orcidid>https://orcid.org/0000-0003-1347-7089</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2024-06, Vol.69 (6), p.3952-3959 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAC_2024_3351806 |
source | IEEE Electronic Library (IEL) |
subjects | Asymptotic stability Autonomous systems Convergence Least mean squares methods Least squares method Linear systems Numerical stability parameter estimation Stability Stability analysis statistical learning Switches switching systems System identification |
title | Strong Consistency and Rate of Convergence of Switched Least Squares System Identification for Autonomous Markov Jump Linear Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A40%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20Consistency%20and%20Rate%20of%20Convergence%20of%20Switched%20Least%20Squares%20System%20Identification%20for%20Autonomous%20Markov%20Jump%20Linear%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Sayedana,%20Borna&rft.date=2024-06-01&rft.volume=69&rft.issue=6&rft.spage=3952&rft.epage=3959&rft.pages=3952-3959&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2024.3351806&rft_dat=%3Cproquest_RIE%3E3061462469%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3061462469&rft_id=info:pmid/&rft_ieee_id=10384727&rfr_iscdi=true |