Analysis of Performance for Multiagent Networks

In this article, we analyze the {H}_{\infty } performance of the first-order continuous-time multiagent consensus network and that of the corresponding sampled-data network in the presence of external disturbances. First, we build the quantitative relation between the {H}_{\infty } performance and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2024-08, Vol.69 (8), p.5125-5140
Hauptverfasser: Wang, Jiamin, Liu, Jian, Zheng, Yuanshi, Xi, Jianxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5140
container_issue 8
container_start_page 5125
container_title IEEE transactions on automatic control
container_volume 69
creator Wang, Jiamin
Liu, Jian
Zheng, Yuanshi
Xi, Jianxiang
description In this article, we analyze the {H}_{\infty } performance of the first-order continuous-time multiagent consensus network and that of the corresponding sampled-data network in the presence of external disturbances. First, we build the quantitative relation between the {H}_{\infty } performance and the eigenvalues of directed graph Laplacian for the continuous-time multiagent network. Second, we establish the analytic expression of {H}_{\infty } performance for the sampled-data multiagent network, which depends not only on the eigenvalues of the Laplacian matrix but also on the sampling period. It is proved that there exists a unique optimal sampling period such that the sampled-data multiagent network obtains the optimal {H}_{\infty } performance. Furthermore, we show that the {H}_{\infty } performance of the sampled-data multiagent network is not better than that of the original continuous-time multiagent network. Finally, numerical tests are given on several well-known graphs.
doi_str_mv 10.1109/TAC.2023.3342060
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2023_3342060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10354485</ieee_id><sourcerecordid>10_1109_TAC_2023_3342060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c625-6ac8c1de597719d8e29801162f982ee4ac7416ad059c89768d6bdf6c92bbdc473</originalsourceid><addsrcrecordid>eNpNj01LxDAYhIMoWFfvHjz0D3Q3b76aHEvxC9aPQ-8hTd5KtdtKUpH993bZPXiaGZgZeAi5BboGoGbTVPWaUcbXnAtGFT0jGUipCyYZPycZpaALw7S6JFcpfS5RCQEZ2VSjG_apT_nU5e8Yuynu3OgxX0z-8jPMvfvAcc5fcf6d4le6JhedGxLenHRFmof7pn4qtm-Pz3W1LbxislDOaw8BpSlLMEEjM5oCKNYZzRCF86UA5QKVxmtTKh1UGzrlDWvb4EXJV4Qeb32cUorY2e_Y71zcW6D2wGsXXnvgtSfeZXJ3nPSI-K_OpRBa8j_O71C4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis of Performance for Multiagent Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Jiamin ; Liu, Jian ; Zheng, Yuanshi ; Xi, Jianxiang</creator><creatorcontrib>Wang, Jiamin ; Liu, Jian ; Zheng, Yuanshi ; Xi, Jianxiang</creatorcontrib><description><![CDATA[In this article, we analyze the <inline-formula><tex-math notation="LaTeX">{H}_{\infty }</tex-math></inline-formula> performance of the first-order continuous-time multiagent consensus network and that of the corresponding sampled-data network in the presence of external disturbances. First, we build the quantitative relation between the <inline-formula><tex-math notation="LaTeX">{H}_{\infty }</tex-math></inline-formula> performance and the eigenvalues of directed graph Laplacian for the continuous-time multiagent network. Second, we establish the analytic expression of <inline-formula><tex-math notation="LaTeX">{H}_{\infty }</tex-math></inline-formula> performance for the sampled-data multiagent network, which depends not only on the eigenvalues of the Laplacian matrix but also on the sampling period. It is proved that there exists a unique optimal sampling period such that the sampled-data multiagent network obtains the optimal <inline-formula><tex-math notation="LaTeX">{H}_{\infty }</tex-math></inline-formula> performance. Furthermore, we show that the <inline-formula><tex-math notation="LaTeX">{H}_{\infty }</tex-math></inline-formula> performance of the sampled-data multiagent network is not better than that of the original continuous-time multiagent network. Finally, numerical tests are given on several well-known graphs.]]></description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2023.3342060</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> {H}_{\infty }</tex-math> </inline-formula> </named-content> performance ; Consensus networks ; Directed graphs ; Eigenvalues and eigenfunctions ; graph Laplacian ; Laplace equations ; Multi-agent systems ; Network topology ; optimal sampling period ; Sufficient conditions ; Uncertainty]]></subject><ispartof>IEEE transactions on automatic control, 2024-08, Vol.69 (8), p.5125-5140</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c625-6ac8c1de597719d8e29801162f982ee4ac7416ad059c89768d6bdf6c92bbdc473</cites><orcidid>0000-0001-5056-5657 ; 0000-0002-1143-2509 ; 0000-0002-7094-5726 ; 0000-0002-7472-0743</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10354485$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10354485$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Jiamin</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Zheng, Yuanshi</creatorcontrib><creatorcontrib>Xi, Jianxiang</creatorcontrib><title>Analysis of Performance for Multiagent Networks</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description><![CDATA[In this article, we analyze the <inline-formula><tex-math notation="LaTeX">{H}_{\infty }</tex-math></inline-formula> performance of the first-order continuous-time multiagent consensus network and that of the corresponding sampled-data network in the presence of external disturbances. First, we build the quantitative relation between the <inline-formula><tex-math notation="LaTeX">{H}_{\infty }</tex-math></inline-formula> performance and the eigenvalues of directed graph Laplacian for the continuous-time multiagent network. Second, we establish the analytic expression of <inline-formula><tex-math notation="LaTeX">{H}_{\infty }</tex-math></inline-formula> performance for the sampled-data multiagent network, which depends not only on the eigenvalues of the Laplacian matrix but also on the sampling period. It is proved that there exists a unique optimal sampling period such that the sampled-data multiagent network obtains the optimal <inline-formula><tex-math notation="LaTeX">{H}_{\infty }</tex-math></inline-formula> performance. Furthermore, we show that the <inline-formula><tex-math notation="LaTeX">{H}_{\infty }</tex-math></inline-formula> performance of the sampled-data multiagent network is not better than that of the original continuous-time multiagent network. Finally, numerical tests are given on several well-known graphs.]]></description><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> {H}_{\infty }</tex-math> </inline-formula> </named-content> performance]]></subject><subject>Consensus networks</subject><subject>Directed graphs</subject><subject>Eigenvalues and eigenfunctions</subject><subject>graph Laplacian</subject><subject>Laplace equations</subject><subject>Multi-agent systems</subject><subject>Network topology</subject><subject>optimal sampling period</subject><subject>Sufficient conditions</subject><subject>Uncertainty</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNj01LxDAYhIMoWFfvHjz0D3Q3b76aHEvxC9aPQ-8hTd5KtdtKUpH993bZPXiaGZgZeAi5BboGoGbTVPWaUcbXnAtGFT0jGUipCyYZPycZpaALw7S6JFcpfS5RCQEZ2VSjG_apT_nU5e8Yuynu3OgxX0z-8jPMvfvAcc5fcf6d4le6JhedGxLenHRFmof7pn4qtm-Pz3W1LbxislDOaw8BpSlLMEEjM5oCKNYZzRCF86UA5QKVxmtTKh1UGzrlDWvb4EXJV4Qeb32cUorY2e_Y71zcW6D2wGsXXnvgtSfeZXJ3nPSI-K_OpRBa8j_O71C4</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Wang, Jiamin</creator><creator>Liu, Jian</creator><creator>Zheng, Yuanshi</creator><creator>Xi, Jianxiang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5056-5657</orcidid><orcidid>https://orcid.org/0000-0002-1143-2509</orcidid><orcidid>https://orcid.org/0000-0002-7094-5726</orcidid><orcidid>https://orcid.org/0000-0002-7472-0743</orcidid></search><sort><creationdate>202408</creationdate><title>Analysis of Performance for Multiagent Networks</title><author>Wang, Jiamin ; Liu, Jian ; Zheng, Yuanshi ; Xi, Jianxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c625-6ac8c1de597719d8e29801162f982ee4ac7416ad059c89768d6bdf6c92bbdc473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> {H}_{\infty }</tex-math> </inline-formula> </named-content> performance]]></topic><topic>Consensus networks</topic><topic>Directed graphs</topic><topic>Eigenvalues and eigenfunctions</topic><topic>graph Laplacian</topic><topic>Laplace equations</topic><topic>Multi-agent systems</topic><topic>Network topology</topic><topic>optimal sampling period</topic><topic>Sufficient conditions</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jiamin</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Zheng, Yuanshi</creatorcontrib><creatorcontrib>Xi, Jianxiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Jiamin</au><au>Liu, Jian</au><au>Zheng, Yuanshi</au><au>Xi, Jianxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Performance for Multiagent Networks</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-08</date><risdate>2024</risdate><volume>69</volume><issue>8</issue><spage>5125</spage><epage>5140</epage><pages>5125-5140</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract><![CDATA[In this article, we analyze the <inline-formula><tex-math notation="LaTeX">{H}_{\infty }</tex-math></inline-formula> performance of the first-order continuous-time multiagent consensus network and that of the corresponding sampled-data network in the presence of external disturbances. First, we build the quantitative relation between the <inline-formula><tex-math notation="LaTeX">{H}_{\infty }</tex-math></inline-formula> performance and the eigenvalues of directed graph Laplacian for the continuous-time multiagent network. Second, we establish the analytic expression of <inline-formula><tex-math notation="LaTeX">{H}_{\infty }</tex-math></inline-formula> performance for the sampled-data multiagent network, which depends not only on the eigenvalues of the Laplacian matrix but also on the sampling period. It is proved that there exists a unique optimal sampling period such that the sampled-data multiagent network obtains the optimal <inline-formula><tex-math notation="LaTeX">{H}_{\infty }</tex-math></inline-formula> performance. Furthermore, we show that the <inline-formula><tex-math notation="LaTeX">{H}_{\infty }</tex-math></inline-formula> performance of the sampled-data multiagent network is not better than that of the original continuous-time multiagent network. Finally, numerical tests are given on several well-known graphs.]]></abstract><pub>IEEE</pub><doi>10.1109/TAC.2023.3342060</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5056-5657</orcidid><orcidid>https://orcid.org/0000-0002-1143-2509</orcidid><orcidid>https://orcid.org/0000-0002-7094-5726</orcidid><orcidid>https://orcid.org/0000-0002-7472-0743</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2024-08, Vol.69 (8), p.5125-5140
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_2023_3342060
source IEEE Electronic Library (IEL)
subjects <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> {H}_{\infty }</tex-math> </inline-formula> </named-content> performance
Consensus networks
Directed graphs
Eigenvalues and eigenfunctions
graph Laplacian
Laplace equations
Multi-agent systems
Network topology
optimal sampling period
Sufficient conditions
Uncertainty
title Analysis of Performance for Multiagent Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Performance%20for%20Multiagent%20Networks&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Wang,%20Jiamin&rft.date=2024-08&rft.volume=69&rft.issue=8&rft.spage=5125&rft.epage=5140&rft.pages=5125-5140&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2023.3342060&rft_dat=%3Ccrossref_RIE%3E10_1109_TAC_2023_3342060%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10354485&rfr_iscdi=true