Monotone one-port circuits

Maximal monotonicity is explored as a generalization of the linear theory of passivity, aiming at an algorithmic input/output analysis of physical models. The theory is developed for maximal monotone one-port circuits, formed by the series and parallel interconnection of basic elements. These circui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2024-02, Vol.69 (2), p.1-14
Hauptverfasser: Chaffey, Thomas, Sepulchre, Rodolphe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 2
container_start_page 1
container_title IEEE transactions on automatic control
container_volume 69
creator Chaffey, Thomas
Sepulchre, Rodolphe
description Maximal monotonicity is explored as a generalization of the linear theory of passivity, aiming at an algorithmic input/output analysis of physical models. The theory is developed for maximal monotone one-port circuits, formed by the series and parallel interconnection of basic elements. These circuits generalize passive LTI transfer functions. Periodic input signals are shown to be mapped to periodic output signals, and these input-output behaviors can be efficiently computed using a maximal monotone splitting algorithm, which decomposes the computation according to the circuit topology. A new splitting algorithm is presented, which applies to any monotone one-port circuit defined as a port interconnection of monotone elements.
doi_str_mv 10.1109/TAC.2023.3274690
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2023_3274690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10121908</ieee_id><sourcerecordid>2920291932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-e43dc625a7a51444c8f9959319657581556e31e300f4ca25126762850cd6efdf3</originalsourceid><addsrcrecordid>eNpNkM1LxDAQxYMoWFfvIh4WPKdmJh9NjkvxC1a8rOdQ0gS6aFOT9uB_b5bdg4dhGHhv5s2PkFtgNQAzj7tNWyNDXnNshDLsjFQgpaYokZ-TijHQ1KBWl-Qq530ZlRBQkbv3OMY5jn5dik4xzWs3JLcMc74mF6H7yv7m1Ffk8_lp177S7cfLW7vZUse5mKkXvHcKZdd0EoQQTgdjpOFglGykLiGU5-A5Y0G4DiWgahRqyVyvfOgDX5GH494pxZ_F59nu45LGctKiKS8ZMByLih1VLsWckw92SsN3l34tMHsgYAsBeyBgTwSK5f5oGbz3_-SAYJjmf8g_U98</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920291932</pqid></control><display><type>article</type><title>Monotone one-port circuits</title><source>IEEE Electronic Library (IEL)</source><creator>Chaffey, Thomas ; Sepulchre, Rodolphe</creator><creatorcontrib>Chaffey, Thomas ; Sepulchre, Rodolphe</creatorcontrib><description>Maximal monotonicity is explored as a generalization of the linear theory of passivity, aiming at an algorithmic input/output analysis of physical models. The theory is developed for maximal monotone one-port circuits, formed by the series and parallel interconnection of basic elements. These circuits generalize passive LTI transfer functions. Periodic input signals are shown to be mapped to periodic output signals, and these input-output behaviors can be efficiently computed using a maximal monotone splitting algorithm, which decomposes the computation according to the circuit topology. A new splitting algorithm is presented, which applies to any monotone one-port circuit defined as a port interconnection of monotone elements.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2023.3274690</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Circuits ; Input output analysis ; Integrated circuit interconnections ; Integrated circuit modeling ; Linear systems ; Resistors ; RLC circuits ; Splitting ; Topology ; Transfer functions ; Voltage</subject><ispartof>IEEE transactions on automatic control, 2024-02, Vol.69 (2), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-e43dc625a7a51444c8f9959319657581556e31e300f4ca25126762850cd6efdf3</citedby><cites>FETCH-LOGICAL-c334t-e43dc625a7a51444c8f9959319657581556e31e300f4ca25126762850cd6efdf3</cites><orcidid>0000-0002-7047-3124 ; 0000-0002-4131-6090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10121908$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10121908$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chaffey, Thomas</creatorcontrib><creatorcontrib>Sepulchre, Rodolphe</creatorcontrib><title>Monotone one-port circuits</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Maximal monotonicity is explored as a generalization of the linear theory of passivity, aiming at an algorithmic input/output analysis of physical models. The theory is developed for maximal monotone one-port circuits, formed by the series and parallel interconnection of basic elements. These circuits generalize passive LTI transfer functions. Periodic input signals are shown to be mapped to periodic output signals, and these input-output behaviors can be efficiently computed using a maximal monotone splitting algorithm, which decomposes the computation according to the circuit topology. A new splitting algorithm is presented, which applies to any monotone one-port circuit defined as a port interconnection of monotone elements.</description><subject>Algorithms</subject><subject>Circuits</subject><subject>Input output analysis</subject><subject>Integrated circuit interconnections</subject><subject>Integrated circuit modeling</subject><subject>Linear systems</subject><subject>Resistors</subject><subject>RLC circuits</subject><subject>Splitting</subject><subject>Topology</subject><subject>Transfer functions</subject><subject>Voltage</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LxDAQxYMoWFfvIh4WPKdmJh9NjkvxC1a8rOdQ0gS6aFOT9uB_b5bdg4dhGHhv5s2PkFtgNQAzj7tNWyNDXnNshDLsjFQgpaYokZ-TijHQ1KBWl-Qq530ZlRBQkbv3OMY5jn5dik4xzWs3JLcMc74mF6H7yv7m1Ffk8_lp177S7cfLW7vZUse5mKkXvHcKZdd0EoQQTgdjpOFglGykLiGU5-A5Y0G4DiWgahRqyVyvfOgDX5GH494pxZ_F59nu45LGctKiKS8ZMByLih1VLsWckw92SsN3l34tMHsgYAsBeyBgTwSK5f5oGbz3_-SAYJjmf8g_U98</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Chaffey, Thomas</creator><creator>Sepulchre, Rodolphe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7047-3124</orcidid><orcidid>https://orcid.org/0000-0002-4131-6090</orcidid></search><sort><creationdate>20240201</creationdate><title>Monotone one-port circuits</title><author>Chaffey, Thomas ; Sepulchre, Rodolphe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-e43dc625a7a51444c8f9959319657581556e31e300f4ca25126762850cd6efdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Circuits</topic><topic>Input output analysis</topic><topic>Integrated circuit interconnections</topic><topic>Integrated circuit modeling</topic><topic>Linear systems</topic><topic>Resistors</topic><topic>RLC circuits</topic><topic>Splitting</topic><topic>Topology</topic><topic>Transfer functions</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaffey, Thomas</creatorcontrib><creatorcontrib>Sepulchre, Rodolphe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chaffey, Thomas</au><au>Sepulchre, Rodolphe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monotone one-port circuits</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>69</volume><issue>2</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Maximal monotonicity is explored as a generalization of the linear theory of passivity, aiming at an algorithmic input/output analysis of physical models. The theory is developed for maximal monotone one-port circuits, formed by the series and parallel interconnection of basic elements. These circuits generalize passive LTI transfer functions. Periodic input signals are shown to be mapped to periodic output signals, and these input-output behaviors can be efficiently computed using a maximal monotone splitting algorithm, which decomposes the computation according to the circuit topology. A new splitting algorithm is presented, which applies to any monotone one-port circuit defined as a port interconnection of monotone elements.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2023.3274690</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7047-3124</orcidid><orcidid>https://orcid.org/0000-0002-4131-6090</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2024-02, Vol.69 (2), p.1-14
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_2023_3274690
source IEEE Electronic Library (IEL)
subjects Algorithms
Circuits
Input output analysis
Integrated circuit interconnections
Integrated circuit modeling
Linear systems
Resistors
RLC circuits
Splitting
Topology
Transfer functions
Voltage
title Monotone one-port circuits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A01%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monotone%20one-port%20circuits&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Chaffey,%20Thomas&rft.date=2024-02-01&rft.volume=69&rft.issue=2&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2023.3274690&rft_dat=%3Cproquest_RIE%3E2920291932%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920291932&rft_id=info:pmid/&rft_ieee_id=10121908&rfr_iscdi=true