Monotone one-port circuits
Maximal monotonicity is explored as a generalization of the linear theory of passivity, aiming at an algorithmic input/output analysis of physical models. The theory is developed for maximal monotone one-port circuits, formed by the series and parallel interconnection of basic elements. These circui...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2024-02, Vol.69 (2), p.1-14 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | IEEE transactions on automatic control |
container_volume | 69 |
creator | Chaffey, Thomas Sepulchre, Rodolphe |
description | Maximal monotonicity is explored as a generalization of the linear theory of passivity, aiming at an algorithmic input/output analysis of physical models. The theory is developed for maximal monotone one-port circuits, formed by the series and parallel interconnection of basic elements. These circuits generalize passive LTI transfer functions. Periodic input signals are shown to be mapped to periodic output signals, and these input-output behaviors can be efficiently computed using a maximal monotone splitting algorithm, which decomposes the computation according to the circuit topology. A new splitting algorithm is presented, which applies to any monotone one-port circuit defined as a port interconnection of monotone elements. |
doi_str_mv | 10.1109/TAC.2023.3274690 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2023_3274690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10121908</ieee_id><sourcerecordid>2920291932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-e43dc625a7a51444c8f9959319657581556e31e300f4ca25126762850cd6efdf3</originalsourceid><addsrcrecordid>eNpNkM1LxDAQxYMoWFfvIh4WPKdmJh9NjkvxC1a8rOdQ0gS6aFOT9uB_b5bdg4dhGHhv5s2PkFtgNQAzj7tNWyNDXnNshDLsjFQgpaYokZ-TijHQ1KBWl-Qq530ZlRBQkbv3OMY5jn5dik4xzWs3JLcMc74mF6H7yv7m1Ffk8_lp177S7cfLW7vZUse5mKkXvHcKZdd0EoQQTgdjpOFglGykLiGU5-A5Y0G4DiWgahRqyVyvfOgDX5GH494pxZ_F59nu45LGctKiKS8ZMByLih1VLsWckw92SsN3l34tMHsgYAsBeyBgTwSK5f5oGbz3_-SAYJjmf8g_U98</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920291932</pqid></control><display><type>article</type><title>Monotone one-port circuits</title><source>IEEE Electronic Library (IEL)</source><creator>Chaffey, Thomas ; Sepulchre, Rodolphe</creator><creatorcontrib>Chaffey, Thomas ; Sepulchre, Rodolphe</creatorcontrib><description>Maximal monotonicity is explored as a generalization of the linear theory of passivity, aiming at an algorithmic input/output analysis of physical models. The theory is developed for maximal monotone one-port circuits, formed by the series and parallel interconnection of basic elements. These circuits generalize passive LTI transfer functions. Periodic input signals are shown to be mapped to periodic output signals, and these input-output behaviors can be efficiently computed using a maximal monotone splitting algorithm, which decomposes the computation according to the circuit topology. A new splitting algorithm is presented, which applies to any monotone one-port circuit defined as a port interconnection of monotone elements.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2023.3274690</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Circuits ; Input output analysis ; Integrated circuit interconnections ; Integrated circuit modeling ; Linear systems ; Resistors ; RLC circuits ; Splitting ; Topology ; Transfer functions ; Voltage</subject><ispartof>IEEE transactions on automatic control, 2024-02, Vol.69 (2), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-e43dc625a7a51444c8f9959319657581556e31e300f4ca25126762850cd6efdf3</citedby><cites>FETCH-LOGICAL-c334t-e43dc625a7a51444c8f9959319657581556e31e300f4ca25126762850cd6efdf3</cites><orcidid>0000-0002-7047-3124 ; 0000-0002-4131-6090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10121908$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10121908$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chaffey, Thomas</creatorcontrib><creatorcontrib>Sepulchre, Rodolphe</creatorcontrib><title>Monotone one-port circuits</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Maximal monotonicity is explored as a generalization of the linear theory of passivity, aiming at an algorithmic input/output analysis of physical models. The theory is developed for maximal monotone one-port circuits, formed by the series and parallel interconnection of basic elements. These circuits generalize passive LTI transfer functions. Periodic input signals are shown to be mapped to periodic output signals, and these input-output behaviors can be efficiently computed using a maximal monotone splitting algorithm, which decomposes the computation according to the circuit topology. A new splitting algorithm is presented, which applies to any monotone one-port circuit defined as a port interconnection of monotone elements.</description><subject>Algorithms</subject><subject>Circuits</subject><subject>Input output analysis</subject><subject>Integrated circuit interconnections</subject><subject>Integrated circuit modeling</subject><subject>Linear systems</subject><subject>Resistors</subject><subject>RLC circuits</subject><subject>Splitting</subject><subject>Topology</subject><subject>Transfer functions</subject><subject>Voltage</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LxDAQxYMoWFfvIh4WPKdmJh9NjkvxC1a8rOdQ0gS6aFOT9uB_b5bdg4dhGHhv5s2PkFtgNQAzj7tNWyNDXnNshDLsjFQgpaYokZ-TijHQ1KBWl-Qq530ZlRBQkbv3OMY5jn5dik4xzWs3JLcMc74mF6H7yv7m1Ffk8_lp177S7cfLW7vZUse5mKkXvHcKZdd0EoQQTgdjpOFglGykLiGU5-A5Y0G4DiWgahRqyVyvfOgDX5GH494pxZ_F59nu45LGctKiKS8ZMByLih1VLsWckw92SsN3l34tMHsgYAsBeyBgTwSK5f5oGbz3_-SAYJjmf8g_U98</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Chaffey, Thomas</creator><creator>Sepulchre, Rodolphe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7047-3124</orcidid><orcidid>https://orcid.org/0000-0002-4131-6090</orcidid></search><sort><creationdate>20240201</creationdate><title>Monotone one-port circuits</title><author>Chaffey, Thomas ; Sepulchre, Rodolphe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-e43dc625a7a51444c8f9959319657581556e31e300f4ca25126762850cd6efdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Circuits</topic><topic>Input output analysis</topic><topic>Integrated circuit interconnections</topic><topic>Integrated circuit modeling</topic><topic>Linear systems</topic><topic>Resistors</topic><topic>RLC circuits</topic><topic>Splitting</topic><topic>Topology</topic><topic>Transfer functions</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaffey, Thomas</creatorcontrib><creatorcontrib>Sepulchre, Rodolphe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chaffey, Thomas</au><au>Sepulchre, Rodolphe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monotone one-port circuits</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>69</volume><issue>2</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Maximal monotonicity is explored as a generalization of the linear theory of passivity, aiming at an algorithmic input/output analysis of physical models. The theory is developed for maximal monotone one-port circuits, formed by the series and parallel interconnection of basic elements. These circuits generalize passive LTI transfer functions. Periodic input signals are shown to be mapped to periodic output signals, and these input-output behaviors can be efficiently computed using a maximal monotone splitting algorithm, which decomposes the computation according to the circuit topology. A new splitting algorithm is presented, which applies to any monotone one-port circuit defined as a port interconnection of monotone elements.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2023.3274690</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7047-3124</orcidid><orcidid>https://orcid.org/0000-0002-4131-6090</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2024-02, Vol.69 (2), p.1-14 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAC_2023_3274690 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Circuits Input output analysis Integrated circuit interconnections Integrated circuit modeling Linear systems Resistors RLC circuits Splitting Topology Transfer functions Voltage |
title | Monotone one-port circuits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A01%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monotone%20one-port%20circuits&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Chaffey,%20Thomas&rft.date=2024-02-01&rft.volume=69&rft.issue=2&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2023.3274690&rft_dat=%3Cproquest_RIE%3E2920291932%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920291932&rft_id=info:pmid/&rft_ieee_id=10121908&rfr_iscdi=true |