Communication-Efficient Variance-Reduced Decentralized Stochastic Optimization Over Time-Varying Directed Graphs
In this article, we consider the problem of decentralized optimization over time-varying directed networks. The network nodes can access only their local objectives, and aim to collaboratively minimize a global function by exchanging messages with their neighbors. Leveraging sparsification, gradient...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2022-12, Vol.67 (12), p.6583-6594 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6594 |
---|---|
container_issue | 12 |
container_start_page | 6583 |
container_title | IEEE transactions on automatic control |
container_volume | 67 |
creator | Chen, Yiyue Hashemi, Abolfazl Vikalo, Haris |
description | In this article, we consider the problem of decentralized optimization over time-varying directed networks. The network nodes can access only their local objectives, and aim to collaboratively minimize a global function by exchanging messages with their neighbors. Leveraging sparsification, gradient tracking, and variance reduction, we propose a novel communication-efficient decentralized optimization scheme that is suitable for resource-constrained time-varying directed networks. We prove that in the case of smooth and strongly convex objective functions, the proposed scheme achieves an accelerated linear convergence rate. To our knowledge, this is the first decentralized optimization framework for time-varying directed networks that achieves such a convergence rate and applies to settings requiring sparsified communication. Experimental results on both synthetic and real datasets verify the theoretical results and demonstrate the efficacy of the proposed scheme. |
doi_str_mv | 10.1109/TAC.2021.3133372 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2021_3133372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9640474</ieee_id><sourcerecordid>2747616118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-dedc8000eaffc2363f531f82ff830050856e3c7b4d571dda91e6e80435dd74243</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wcuC56353M0ey7ZWoVDQ6nWJycSmdD9MdgX715va4ml4w3tvhh9CtwRPCMHFw3paTiimZMIIYyynZ2hEhJApFZSdoxHGRKYFldklugphG2XGORmhrmzremicVr1rm3RurdMOmj55V96pRkP6AmbQYJIZ6Lj3auf2Ub32rd6o0DudrLre1W7_V5CsvsEna1dDGgt-XPOZzJwH3cfIwqtuE67RhVW7ADenOUZvj_N1-ZQuV4vncrpMNS1InxowWmKMQVmrKcuYFYxYSa2VDGOBpciA6fyDG5ETY1RBIAOJORPG5JxyNkb3x97Ot18DhL7atoNv4smK5jzPSEaIjC58dGnfhuDBVp13dfy8Irg6cK0i1-rAtTpxjZG7Y8QBwL-9yDjmOWe_SeR1IA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747616118</pqid></control><display><type>article</type><title>Communication-Efficient Variance-Reduced Decentralized Stochastic Optimization Over Time-Varying Directed Graphs</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Yiyue ; Hashemi, Abolfazl ; Vikalo, Haris</creator><creatorcontrib>Chen, Yiyue ; Hashemi, Abolfazl ; Vikalo, Haris</creatorcontrib><description>In this article, we consider the problem of decentralized optimization over time-varying directed networks. The network nodes can access only their local objectives, and aim to collaboratively minimize a global function by exchanging messages with their neighbors. Leveraging sparsification, gradient tracking, and variance reduction, we propose a novel communication-efficient decentralized optimization scheme that is suitable for resource-constrained time-varying directed networks. We prove that in the case of smooth and strongly convex objective functions, the proposed scheme achieves an accelerated linear convergence rate. To our knowledge, this is the first decentralized optimization framework for time-varying directed networks that achieves such a convergence rate and applies to settings requiring sparsified communication. Experimental results on both synthetic and real datasets verify the theoretical results and demonstrate the efficacy of the proposed scheme.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2021.3133372</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Convergence ; Convex functions ; Convex optimization ; decentralized optimization ; Directed graphs ; Graph theory ; Linear programming ; Networks ; Optimization ; Signal processing algorithms ; stochastic optimization ; Stochastic processes</subject><ispartof>IEEE transactions on automatic control, 2022-12, Vol.67 (12), p.6583-6594</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-dedc8000eaffc2363f531f82ff830050856e3c7b4d571dda91e6e80435dd74243</citedby><cites>FETCH-LOGICAL-c291t-dedc8000eaffc2363f531f82ff830050856e3c7b4d571dda91e6e80435dd74243</cites><orcidid>0000-0002-8421-4270 ; 0000-0002-7945-4114 ; 0000-0002-3945-526X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9640474$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9640474$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yiyue</creatorcontrib><creatorcontrib>Hashemi, Abolfazl</creatorcontrib><creatorcontrib>Vikalo, Haris</creatorcontrib><title>Communication-Efficient Variance-Reduced Decentralized Stochastic Optimization Over Time-Varying Directed Graphs</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>In this article, we consider the problem of decentralized optimization over time-varying directed networks. The network nodes can access only their local objectives, and aim to collaboratively minimize a global function by exchanging messages with their neighbors. Leveraging sparsification, gradient tracking, and variance reduction, we propose a novel communication-efficient decentralized optimization scheme that is suitable for resource-constrained time-varying directed networks. We prove that in the case of smooth and strongly convex objective functions, the proposed scheme achieves an accelerated linear convergence rate. To our knowledge, this is the first decentralized optimization framework for time-varying directed networks that achieves such a convergence rate and applies to settings requiring sparsified communication. Experimental results on both synthetic and real datasets verify the theoretical results and demonstrate the efficacy of the proposed scheme.</description><subject>Convergence</subject><subject>Convex functions</subject><subject>Convex optimization</subject><subject>decentralized optimization</subject><subject>Directed graphs</subject><subject>Graph theory</subject><subject>Linear programming</subject><subject>Networks</subject><subject>Optimization</subject><subject>Signal processing algorithms</subject><subject>stochastic optimization</subject><subject>Stochastic processes</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wcuC56353M0ey7ZWoVDQ6nWJycSmdD9MdgX715va4ml4w3tvhh9CtwRPCMHFw3paTiimZMIIYyynZ2hEhJApFZSdoxHGRKYFldklugphG2XGORmhrmzremicVr1rm3RurdMOmj55V96pRkP6AmbQYJIZ6Lj3auf2Ub32rd6o0DudrLre1W7_V5CsvsEna1dDGgt-XPOZzJwH3cfIwqtuE67RhVW7ADenOUZvj_N1-ZQuV4vncrpMNS1InxowWmKMQVmrKcuYFYxYSa2VDGOBpciA6fyDG5ETY1RBIAOJORPG5JxyNkb3x97Ot18DhL7atoNv4smK5jzPSEaIjC58dGnfhuDBVp13dfy8Irg6cK0i1-rAtTpxjZG7Y8QBwL-9yDjmOWe_SeR1IA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Chen, Yiyue</creator><creator>Hashemi, Abolfazl</creator><creator>Vikalo, Haris</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8421-4270</orcidid><orcidid>https://orcid.org/0000-0002-7945-4114</orcidid><orcidid>https://orcid.org/0000-0002-3945-526X</orcidid></search><sort><creationdate>20221201</creationdate><title>Communication-Efficient Variance-Reduced Decentralized Stochastic Optimization Over Time-Varying Directed Graphs</title><author>Chen, Yiyue ; Hashemi, Abolfazl ; Vikalo, Haris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-dedc8000eaffc2363f531f82ff830050856e3c7b4d571dda91e6e80435dd74243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convergence</topic><topic>Convex functions</topic><topic>Convex optimization</topic><topic>decentralized optimization</topic><topic>Directed graphs</topic><topic>Graph theory</topic><topic>Linear programming</topic><topic>Networks</topic><topic>Optimization</topic><topic>Signal processing algorithms</topic><topic>stochastic optimization</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yiyue</creatorcontrib><creatorcontrib>Hashemi, Abolfazl</creatorcontrib><creatorcontrib>Vikalo, Haris</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yiyue</au><au>Hashemi, Abolfazl</au><au>Vikalo, Haris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Communication-Efficient Variance-Reduced Decentralized Stochastic Optimization Over Time-Varying Directed Graphs</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>67</volume><issue>12</issue><spage>6583</spage><epage>6594</epage><pages>6583-6594</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>In this article, we consider the problem of decentralized optimization over time-varying directed networks. The network nodes can access only their local objectives, and aim to collaboratively minimize a global function by exchanging messages with their neighbors. Leveraging sparsification, gradient tracking, and variance reduction, we propose a novel communication-efficient decentralized optimization scheme that is suitable for resource-constrained time-varying directed networks. We prove that in the case of smooth and strongly convex objective functions, the proposed scheme achieves an accelerated linear convergence rate. To our knowledge, this is the first decentralized optimization framework for time-varying directed networks that achieves such a convergence rate and applies to settings requiring sparsified communication. Experimental results on both synthetic and real datasets verify the theoretical results and demonstrate the efficacy of the proposed scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2021.3133372</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8421-4270</orcidid><orcidid>https://orcid.org/0000-0002-7945-4114</orcidid><orcidid>https://orcid.org/0000-0002-3945-526X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2022-12, Vol.67 (12), p.6583-6594 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAC_2021_3133372 |
source | IEEE Electronic Library (IEL) |
subjects | Convergence Convex functions Convex optimization decentralized optimization Directed graphs Graph theory Linear programming Networks Optimization Signal processing algorithms stochastic optimization Stochastic processes |
title | Communication-Efficient Variance-Reduced Decentralized Stochastic Optimization Over Time-Varying Directed Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A30%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Communication-Efficient%20Variance-Reduced%20Decentralized%20Stochastic%20Optimization%20Over%20Time-Varying%20Directed%20Graphs&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Chen,%20Yiyue&rft.date=2022-12-01&rft.volume=67&rft.issue=12&rft.spage=6583&rft.epage=6594&rft.pages=6583-6594&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2021.3133372&rft_dat=%3Cproquest_RIE%3E2747616118%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747616118&rft_id=info:pmid/&rft_ieee_id=9640474&rfr_iscdi=true |