Communication-Efficient Variance-Reduced Decentralized Stochastic Optimization Over Time-Varying Directed Graphs

In this article, we consider the problem of decentralized optimization over time-varying directed networks. The network nodes can access only their local objectives, and aim to collaboratively minimize a global function by exchanging messages with their neighbors. Leveraging sparsification, gradient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2022-12, Vol.67 (12), p.6583-6594
Hauptverfasser: Chen, Yiyue, Hashemi, Abolfazl, Vikalo, Haris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6594
container_issue 12
container_start_page 6583
container_title IEEE transactions on automatic control
container_volume 67
creator Chen, Yiyue
Hashemi, Abolfazl
Vikalo, Haris
description In this article, we consider the problem of decentralized optimization over time-varying directed networks. The network nodes can access only their local objectives, and aim to collaboratively minimize a global function by exchanging messages with their neighbors. Leveraging sparsification, gradient tracking, and variance reduction, we propose a novel communication-efficient decentralized optimization scheme that is suitable for resource-constrained time-varying directed networks. We prove that in the case of smooth and strongly convex objective functions, the proposed scheme achieves an accelerated linear convergence rate. To our knowledge, this is the first decentralized optimization framework for time-varying directed networks that achieves such a convergence rate and applies to settings requiring sparsified communication. Experimental results on both synthetic and real datasets verify the theoretical results and demonstrate the efficacy of the proposed scheme.
doi_str_mv 10.1109/TAC.2021.3133372
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2021_3133372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9640474</ieee_id><sourcerecordid>2747616118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-dedc8000eaffc2363f531f82ff830050856e3c7b4d571dda91e6e80435dd74243</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wcuC56353M0ey7ZWoVDQ6nWJycSmdD9MdgX715va4ml4w3tvhh9CtwRPCMHFw3paTiimZMIIYyynZ2hEhJApFZSdoxHGRKYFldklugphG2XGORmhrmzremicVr1rm3RurdMOmj55V96pRkP6AmbQYJIZ6Lj3auf2Ub32rd6o0DudrLre1W7_V5CsvsEna1dDGgt-XPOZzJwH3cfIwqtuE67RhVW7ADenOUZvj_N1-ZQuV4vncrpMNS1InxowWmKMQVmrKcuYFYxYSa2VDGOBpciA6fyDG5ETY1RBIAOJORPG5JxyNkb3x97Ot18DhL7atoNv4smK5jzPSEaIjC58dGnfhuDBVp13dfy8Irg6cK0i1-rAtTpxjZG7Y8QBwL-9yDjmOWe_SeR1IA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747616118</pqid></control><display><type>article</type><title>Communication-Efficient Variance-Reduced Decentralized Stochastic Optimization Over Time-Varying Directed Graphs</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Yiyue ; Hashemi, Abolfazl ; Vikalo, Haris</creator><creatorcontrib>Chen, Yiyue ; Hashemi, Abolfazl ; Vikalo, Haris</creatorcontrib><description>In this article, we consider the problem of decentralized optimization over time-varying directed networks. The network nodes can access only their local objectives, and aim to collaboratively minimize a global function by exchanging messages with their neighbors. Leveraging sparsification, gradient tracking, and variance reduction, we propose a novel communication-efficient decentralized optimization scheme that is suitable for resource-constrained time-varying directed networks. We prove that in the case of smooth and strongly convex objective functions, the proposed scheme achieves an accelerated linear convergence rate. To our knowledge, this is the first decentralized optimization framework for time-varying directed networks that achieves such a convergence rate and applies to settings requiring sparsified communication. Experimental results on both synthetic and real datasets verify the theoretical results and demonstrate the efficacy of the proposed scheme.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2021.3133372</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Convergence ; Convex functions ; Convex optimization ; decentralized optimization ; Directed graphs ; Graph theory ; Linear programming ; Networks ; Optimization ; Signal processing algorithms ; stochastic optimization ; Stochastic processes</subject><ispartof>IEEE transactions on automatic control, 2022-12, Vol.67 (12), p.6583-6594</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-dedc8000eaffc2363f531f82ff830050856e3c7b4d571dda91e6e80435dd74243</citedby><cites>FETCH-LOGICAL-c291t-dedc8000eaffc2363f531f82ff830050856e3c7b4d571dda91e6e80435dd74243</cites><orcidid>0000-0002-8421-4270 ; 0000-0002-7945-4114 ; 0000-0002-3945-526X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9640474$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9640474$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yiyue</creatorcontrib><creatorcontrib>Hashemi, Abolfazl</creatorcontrib><creatorcontrib>Vikalo, Haris</creatorcontrib><title>Communication-Efficient Variance-Reduced Decentralized Stochastic Optimization Over Time-Varying Directed Graphs</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>In this article, we consider the problem of decentralized optimization over time-varying directed networks. The network nodes can access only their local objectives, and aim to collaboratively minimize a global function by exchanging messages with their neighbors. Leveraging sparsification, gradient tracking, and variance reduction, we propose a novel communication-efficient decentralized optimization scheme that is suitable for resource-constrained time-varying directed networks. We prove that in the case of smooth and strongly convex objective functions, the proposed scheme achieves an accelerated linear convergence rate. To our knowledge, this is the first decentralized optimization framework for time-varying directed networks that achieves such a convergence rate and applies to settings requiring sparsified communication. Experimental results on both synthetic and real datasets verify the theoretical results and demonstrate the efficacy of the proposed scheme.</description><subject>Convergence</subject><subject>Convex functions</subject><subject>Convex optimization</subject><subject>decentralized optimization</subject><subject>Directed graphs</subject><subject>Graph theory</subject><subject>Linear programming</subject><subject>Networks</subject><subject>Optimization</subject><subject>Signal processing algorithms</subject><subject>stochastic optimization</subject><subject>Stochastic processes</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wcuC56353M0ey7ZWoVDQ6nWJycSmdD9MdgX715va4ml4w3tvhh9CtwRPCMHFw3paTiimZMIIYyynZ2hEhJApFZSdoxHGRKYFldklugphG2XGORmhrmzremicVr1rm3RurdMOmj55V96pRkP6AmbQYJIZ6Lj3auf2Ub32rd6o0DudrLre1W7_V5CsvsEna1dDGgt-XPOZzJwH3cfIwqtuE67RhVW7ADenOUZvj_N1-ZQuV4vncrpMNS1InxowWmKMQVmrKcuYFYxYSa2VDGOBpciA6fyDG5ETY1RBIAOJORPG5JxyNkb3x97Ot18DhL7atoNv4smK5jzPSEaIjC58dGnfhuDBVp13dfy8Irg6cK0i1-rAtTpxjZG7Y8QBwL-9yDjmOWe_SeR1IA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Chen, Yiyue</creator><creator>Hashemi, Abolfazl</creator><creator>Vikalo, Haris</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8421-4270</orcidid><orcidid>https://orcid.org/0000-0002-7945-4114</orcidid><orcidid>https://orcid.org/0000-0002-3945-526X</orcidid></search><sort><creationdate>20221201</creationdate><title>Communication-Efficient Variance-Reduced Decentralized Stochastic Optimization Over Time-Varying Directed Graphs</title><author>Chen, Yiyue ; Hashemi, Abolfazl ; Vikalo, Haris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-dedc8000eaffc2363f531f82ff830050856e3c7b4d571dda91e6e80435dd74243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convergence</topic><topic>Convex functions</topic><topic>Convex optimization</topic><topic>decentralized optimization</topic><topic>Directed graphs</topic><topic>Graph theory</topic><topic>Linear programming</topic><topic>Networks</topic><topic>Optimization</topic><topic>Signal processing algorithms</topic><topic>stochastic optimization</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yiyue</creatorcontrib><creatorcontrib>Hashemi, Abolfazl</creatorcontrib><creatorcontrib>Vikalo, Haris</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yiyue</au><au>Hashemi, Abolfazl</au><au>Vikalo, Haris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Communication-Efficient Variance-Reduced Decentralized Stochastic Optimization Over Time-Varying Directed Graphs</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>67</volume><issue>12</issue><spage>6583</spage><epage>6594</epage><pages>6583-6594</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>In this article, we consider the problem of decentralized optimization over time-varying directed networks. The network nodes can access only their local objectives, and aim to collaboratively minimize a global function by exchanging messages with their neighbors. Leveraging sparsification, gradient tracking, and variance reduction, we propose a novel communication-efficient decentralized optimization scheme that is suitable for resource-constrained time-varying directed networks. We prove that in the case of smooth and strongly convex objective functions, the proposed scheme achieves an accelerated linear convergence rate. To our knowledge, this is the first decentralized optimization framework for time-varying directed networks that achieves such a convergence rate and applies to settings requiring sparsified communication. Experimental results on both synthetic and real datasets verify the theoretical results and demonstrate the efficacy of the proposed scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2021.3133372</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8421-4270</orcidid><orcidid>https://orcid.org/0000-0002-7945-4114</orcidid><orcidid>https://orcid.org/0000-0002-3945-526X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2022-12, Vol.67 (12), p.6583-6594
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_2021_3133372
source IEEE Electronic Library (IEL)
subjects Convergence
Convex functions
Convex optimization
decentralized optimization
Directed graphs
Graph theory
Linear programming
Networks
Optimization
Signal processing algorithms
stochastic optimization
Stochastic processes
title Communication-Efficient Variance-Reduced Decentralized Stochastic Optimization Over Time-Varying Directed Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A30%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Communication-Efficient%20Variance-Reduced%20Decentralized%20Stochastic%20Optimization%20Over%20Time-Varying%20Directed%20Graphs&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Chen,%20Yiyue&rft.date=2022-12-01&rft.volume=67&rft.issue=12&rft.spage=6583&rft.epage=6594&rft.pages=6583-6594&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2021.3133372&rft_dat=%3Cproquest_RIE%3E2747616118%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747616118&rft_id=info:pmid/&rft_ieee_id=9640474&rfr_iscdi=true