Privacy-Preserving Dual Averaging With Arbitrary Initial Conditions for Distributed Optimization

This article considers a privacy-concerned distributed optimization problem over multiagent networks, in which malicious agents exist and try to infer the privacy information of the normal ones. We propose a novel dual averaging algorithm which involves the use of a correlated perturbation mechanism...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2022-06, Vol.67 (6), p.3172-3179
Hauptverfasser: Han, Dongyu, Liu, Kun, Sandberg, Henrik, Chai, Senchun, Xia, Yuanqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3179
container_issue 6
container_start_page 3172
container_title IEEE transactions on automatic control
container_volume 67
creator Han, Dongyu
Liu, Kun
Sandberg, Henrik
Chai, Senchun
Xia, Yuanqing
description This article considers a privacy-concerned distributed optimization problem over multiagent networks, in which malicious agents exist and try to infer the privacy information of the normal ones. We propose a novel dual averaging algorithm which involves the use of a correlated perturbation mechanism to preserve the privacy of the normal agents. It is shown that our algorithm achieves deterministic convergence under arbitrary initial conditions and the privacy preservation is guaranteed. Moreover, a probability density function of the perturbation is given to maximize the degree of privacy measured by the trace of the Fisher information matrix. Finally, a numerical example is provided to illustrate the effectiveness of our algorithm.
doi_str_mv 10.1109/TAC.2021.3097295
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2021_3097295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9484828</ieee_id><sourcerecordid>2670203556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-a3bac361f4ddce4b322b19aaa8f90cee6780ffa6c817e4c1118246dfde4990653</originalsourceid><addsrcrecordid>eNo9kN1PwjAUxRujiYi-m_iyxOdhv9a1jwv4QUICD6iPtds6KMKGbYfBv94uIzzde3N_5-TkAHCP4AghKJ6W2XiEIUYjAkWKRXIBBihJeIwTTC7BAELEY4E5uwY3zm3CyShFA_C1sOagimO8sNppezD1Kpq0ahtlB23Vqjs_jV9Hmc2Nt8oeo2ltvAnAuKnLsDW1i6rGRhPjvDV563UZzffe7Myf6r634KpSW6fvTnMI3l-el-O3eDZ_nY6zWVwQLHysSK4KwlBFy7LQNCcY50gopXglYKE1SzmsKsUKjlJNC4QQx5SVVampEJAlZAji3tf96n2by701uxBXNsrIifnIZGNX8tuvJUGQYRr4x57f2-an1c7LTdPaOkSUmKUQQ5IkLFCwpwrbOGd1dfZFUHa9y9C77HqXp96D5KGXGK31GReUU445-QfCFYAs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670203556</pqid></control><display><type>article</type><title>Privacy-Preserving Dual Averaging With Arbitrary Initial Conditions for Distributed Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Han, Dongyu ; Liu, Kun ; Sandberg, Henrik ; Chai, Senchun ; Xia, Yuanqing</creator><creatorcontrib>Han, Dongyu ; Liu, Kun ; Sandberg, Henrik ; Chai, Senchun ; Xia, Yuanqing</creatorcontrib><description>This article considers a privacy-concerned distributed optimization problem over multiagent networks, in which malicious agents exist and try to infer the privacy information of the normal ones. We propose a novel dual averaging algorithm which involves the use of a correlated perturbation mechanism to preserve the privacy of the normal agents. It is shown that our algorithm achieves deterministic convergence under arbitrary initial conditions and the privacy preservation is guaranteed. Moreover, a probability density function of the perturbation is given to maximize the degree of privacy measured by the trace of the Fisher information matrix. Finally, a numerical example is provided to illustrate the effectiveness of our algorithm.</description><identifier>ISSN: 0018-9286</identifier><identifier>ISSN: 1558-2523</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2021.3097295</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Convergence ; Cost function ; Distributed optimization ; dual averaging algorithm ; Fisher information ; Heuristic algorithms ; Initial conditions ; multiagent network ; Multiagent systems ; Optimization ; Perturbation ; Perturbation methods ; Privacy ; privacy preservation ; Probability density function ; Probability density functions</subject><ispartof>IEEE transactions on automatic control, 2022-06, Vol.67 (6), p.3172-3179</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-a3bac361f4ddce4b322b19aaa8f90cee6780ffa6c817e4c1118246dfde4990653</citedby><cites>FETCH-LOGICAL-c329t-a3bac361f4ddce4b322b19aaa8f90cee6780ffa6c817e4c1118246dfde4990653</cites><orcidid>0000-0002-5977-4911 ; 0000-0003-1835-2963 ; 0000-0003-3408-9827 ; 0000-0003-1910-1795 ; 0000-0003-3074-7167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9484828$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9484828$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-310624$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Dongyu</creatorcontrib><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Sandberg, Henrik</creatorcontrib><creatorcontrib>Chai, Senchun</creatorcontrib><creatorcontrib>Xia, Yuanqing</creatorcontrib><title>Privacy-Preserving Dual Averaging With Arbitrary Initial Conditions for Distributed Optimization</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This article considers a privacy-concerned distributed optimization problem over multiagent networks, in which malicious agents exist and try to infer the privacy information of the normal ones. We propose a novel dual averaging algorithm which involves the use of a correlated perturbation mechanism to preserve the privacy of the normal agents. It is shown that our algorithm achieves deterministic convergence under arbitrary initial conditions and the privacy preservation is guaranteed. Moreover, a probability density function of the perturbation is given to maximize the degree of privacy measured by the trace of the Fisher information matrix. Finally, a numerical example is provided to illustrate the effectiveness of our algorithm.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Cost function</subject><subject>Distributed optimization</subject><subject>dual averaging algorithm</subject><subject>Fisher information</subject><subject>Heuristic algorithms</subject><subject>Initial conditions</subject><subject>multiagent network</subject><subject>Multiagent systems</subject><subject>Optimization</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Privacy</subject><subject>privacy preservation</subject><subject>Probability density function</subject><subject>Probability density functions</subject><issn>0018-9286</issn><issn>1558-2523</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1PwjAUxRujiYi-m_iyxOdhv9a1jwv4QUICD6iPtds6KMKGbYfBv94uIzzde3N_5-TkAHCP4AghKJ6W2XiEIUYjAkWKRXIBBihJeIwTTC7BAELEY4E5uwY3zm3CyShFA_C1sOagimO8sNppezD1Kpq0ahtlB23Vqjs_jV9Hmc2Nt8oeo2ltvAnAuKnLsDW1i6rGRhPjvDV563UZzffe7Myf6r634KpSW6fvTnMI3l-el-O3eDZ_nY6zWVwQLHysSK4KwlBFy7LQNCcY50gopXglYKE1SzmsKsUKjlJNC4QQx5SVVampEJAlZAji3tf96n2by701uxBXNsrIifnIZGNX8tuvJUGQYRr4x57f2-an1c7LTdPaOkSUmKUQQ5IkLFCwpwrbOGd1dfZFUHa9y9C77HqXp96D5KGXGK31GReUU445-QfCFYAs</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Han, Dongyu</creator><creator>Liu, Kun</creator><creator>Sandberg, Henrik</creator><creator>Chai, Senchun</creator><creator>Xia, Yuanqing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><orcidid>https://orcid.org/0000-0002-5977-4911</orcidid><orcidid>https://orcid.org/0000-0003-1835-2963</orcidid><orcidid>https://orcid.org/0000-0003-3408-9827</orcidid><orcidid>https://orcid.org/0000-0003-1910-1795</orcidid><orcidid>https://orcid.org/0000-0003-3074-7167</orcidid></search><sort><creationdate>20220601</creationdate><title>Privacy-Preserving Dual Averaging With Arbitrary Initial Conditions for Distributed Optimization</title><author>Han, Dongyu ; Liu, Kun ; Sandberg, Henrik ; Chai, Senchun ; Xia, Yuanqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-a3bac361f4ddce4b322b19aaa8f90cee6780ffa6c817e4c1118246dfde4990653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Cost function</topic><topic>Distributed optimization</topic><topic>dual averaging algorithm</topic><topic>Fisher information</topic><topic>Heuristic algorithms</topic><topic>Initial conditions</topic><topic>multiagent network</topic><topic>Multiagent systems</topic><topic>Optimization</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Privacy</topic><topic>privacy preservation</topic><topic>Probability density function</topic><topic>Probability density functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Dongyu</creatorcontrib><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Sandberg, Henrik</creatorcontrib><creatorcontrib>Chai, Senchun</creatorcontrib><creatorcontrib>Xia, Yuanqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han, Dongyu</au><au>Liu, Kun</au><au>Sandberg, Henrik</au><au>Chai, Senchun</au><au>Xia, Yuanqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Privacy-Preserving Dual Averaging With Arbitrary Initial Conditions for Distributed Optimization</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>67</volume><issue>6</issue><spage>3172</spage><epage>3179</epage><pages>3172-3179</pages><issn>0018-9286</issn><issn>1558-2523</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This article considers a privacy-concerned distributed optimization problem over multiagent networks, in which malicious agents exist and try to infer the privacy information of the normal ones. We propose a novel dual averaging algorithm which involves the use of a correlated perturbation mechanism to preserve the privacy of the normal agents. It is shown that our algorithm achieves deterministic convergence under arbitrary initial conditions and the privacy preservation is guaranteed. Moreover, a probability density function of the perturbation is given to maximize the degree of privacy measured by the trace of the Fisher information matrix. Finally, a numerical example is provided to illustrate the effectiveness of our algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2021.3097295</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5977-4911</orcidid><orcidid>https://orcid.org/0000-0003-1835-2963</orcidid><orcidid>https://orcid.org/0000-0003-3408-9827</orcidid><orcidid>https://orcid.org/0000-0003-1910-1795</orcidid><orcidid>https://orcid.org/0000-0003-3074-7167</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2022-06, Vol.67 (6), p.3172-3179
issn 0018-9286
1558-2523
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_2021_3097295
source IEEE Electronic Library (IEL)
subjects Algorithms
Convergence
Cost function
Distributed optimization
dual averaging algorithm
Fisher information
Heuristic algorithms
Initial conditions
multiagent network
Multiagent systems
Optimization
Perturbation
Perturbation methods
Privacy
privacy preservation
Probability density function
Probability density functions
title Privacy-Preserving Dual Averaging With Arbitrary Initial Conditions for Distributed Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Privacy-Preserving%20Dual%20Averaging%20With%20Arbitrary%20Initial%20Conditions%20for%20Distributed%20Optimization&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Han,%20Dongyu&rft.date=2022-06-01&rft.volume=67&rft.issue=6&rft.spage=3172&rft.epage=3179&rft.pages=3172-3179&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2021.3097295&rft_dat=%3Cproquest_RIE%3E2670203556%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2670203556&rft_id=info:pmid/&rft_ieee_id=9484828&rfr_iscdi=true