Privacy-Preserving Dual Averaging With Arbitrary Initial Conditions for Distributed Optimization
This article considers a privacy-concerned distributed optimization problem over multiagent networks, in which malicious agents exist and try to infer the privacy information of the normal ones. We propose a novel dual averaging algorithm which involves the use of a correlated perturbation mechanism...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2022-06, Vol.67 (6), p.3172-3179 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3179 |
---|---|
container_issue | 6 |
container_start_page | 3172 |
container_title | IEEE transactions on automatic control |
container_volume | 67 |
creator | Han, Dongyu Liu, Kun Sandberg, Henrik Chai, Senchun Xia, Yuanqing |
description | This article considers a privacy-concerned distributed optimization problem over multiagent networks, in which malicious agents exist and try to infer the privacy information of the normal ones. We propose a novel dual averaging algorithm which involves the use of a correlated perturbation mechanism to preserve the privacy of the normal agents. It is shown that our algorithm achieves deterministic convergence under arbitrary initial conditions and the privacy preservation is guaranteed. Moreover, a probability density function of the perturbation is given to maximize the degree of privacy measured by the trace of the Fisher information matrix. Finally, a numerical example is provided to illustrate the effectiveness of our algorithm. |
doi_str_mv | 10.1109/TAC.2021.3097295 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2021_3097295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9484828</ieee_id><sourcerecordid>2670203556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-a3bac361f4ddce4b322b19aaa8f90cee6780ffa6c817e4c1118246dfde4990653</originalsourceid><addsrcrecordid>eNo9kN1PwjAUxRujiYi-m_iyxOdhv9a1jwv4QUICD6iPtds6KMKGbYfBv94uIzzde3N_5-TkAHCP4AghKJ6W2XiEIUYjAkWKRXIBBihJeIwTTC7BAELEY4E5uwY3zm3CyShFA_C1sOagimO8sNppezD1Kpq0ahtlB23Vqjs_jV9Hmc2Nt8oeo2ltvAnAuKnLsDW1i6rGRhPjvDV563UZzffe7Myf6r634KpSW6fvTnMI3l-el-O3eDZ_nY6zWVwQLHysSK4KwlBFy7LQNCcY50gopXglYKE1SzmsKsUKjlJNC4QQx5SVVampEJAlZAji3tf96n2by701uxBXNsrIifnIZGNX8tuvJUGQYRr4x57f2-an1c7LTdPaOkSUmKUQQ5IkLFCwpwrbOGd1dfZFUHa9y9C77HqXp96D5KGXGK31GReUU445-QfCFYAs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670203556</pqid></control><display><type>article</type><title>Privacy-Preserving Dual Averaging With Arbitrary Initial Conditions for Distributed Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Han, Dongyu ; Liu, Kun ; Sandberg, Henrik ; Chai, Senchun ; Xia, Yuanqing</creator><creatorcontrib>Han, Dongyu ; Liu, Kun ; Sandberg, Henrik ; Chai, Senchun ; Xia, Yuanqing</creatorcontrib><description>This article considers a privacy-concerned distributed optimization problem over multiagent networks, in which malicious agents exist and try to infer the privacy information of the normal ones. We propose a novel dual averaging algorithm which involves the use of a correlated perturbation mechanism to preserve the privacy of the normal agents. It is shown that our algorithm achieves deterministic convergence under arbitrary initial conditions and the privacy preservation is guaranteed. Moreover, a probability density function of the perturbation is given to maximize the degree of privacy measured by the trace of the Fisher information matrix. Finally, a numerical example is provided to illustrate the effectiveness of our algorithm.</description><identifier>ISSN: 0018-9286</identifier><identifier>ISSN: 1558-2523</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2021.3097295</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Convergence ; Cost function ; Distributed optimization ; dual averaging algorithm ; Fisher information ; Heuristic algorithms ; Initial conditions ; multiagent network ; Multiagent systems ; Optimization ; Perturbation ; Perturbation methods ; Privacy ; privacy preservation ; Probability density function ; Probability density functions</subject><ispartof>IEEE transactions on automatic control, 2022-06, Vol.67 (6), p.3172-3179</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-a3bac361f4ddce4b322b19aaa8f90cee6780ffa6c817e4c1118246dfde4990653</citedby><cites>FETCH-LOGICAL-c329t-a3bac361f4ddce4b322b19aaa8f90cee6780ffa6c817e4c1118246dfde4990653</cites><orcidid>0000-0002-5977-4911 ; 0000-0003-1835-2963 ; 0000-0003-3408-9827 ; 0000-0003-1910-1795 ; 0000-0003-3074-7167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9484828$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9484828$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-310624$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Dongyu</creatorcontrib><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Sandberg, Henrik</creatorcontrib><creatorcontrib>Chai, Senchun</creatorcontrib><creatorcontrib>Xia, Yuanqing</creatorcontrib><title>Privacy-Preserving Dual Averaging With Arbitrary Initial Conditions for Distributed Optimization</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This article considers a privacy-concerned distributed optimization problem over multiagent networks, in which malicious agents exist and try to infer the privacy information of the normal ones. We propose a novel dual averaging algorithm which involves the use of a correlated perturbation mechanism to preserve the privacy of the normal agents. It is shown that our algorithm achieves deterministic convergence under arbitrary initial conditions and the privacy preservation is guaranteed. Moreover, a probability density function of the perturbation is given to maximize the degree of privacy measured by the trace of the Fisher information matrix. Finally, a numerical example is provided to illustrate the effectiveness of our algorithm.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Cost function</subject><subject>Distributed optimization</subject><subject>dual averaging algorithm</subject><subject>Fisher information</subject><subject>Heuristic algorithms</subject><subject>Initial conditions</subject><subject>multiagent network</subject><subject>Multiagent systems</subject><subject>Optimization</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Privacy</subject><subject>privacy preservation</subject><subject>Probability density function</subject><subject>Probability density functions</subject><issn>0018-9286</issn><issn>1558-2523</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1PwjAUxRujiYi-m_iyxOdhv9a1jwv4QUICD6iPtds6KMKGbYfBv94uIzzde3N_5-TkAHCP4AghKJ6W2XiEIUYjAkWKRXIBBihJeIwTTC7BAELEY4E5uwY3zm3CyShFA_C1sOagimO8sNppezD1Kpq0ahtlB23Vqjs_jV9Hmc2Nt8oeo2ltvAnAuKnLsDW1i6rGRhPjvDV563UZzffe7Myf6r634KpSW6fvTnMI3l-el-O3eDZ_nY6zWVwQLHysSK4KwlBFy7LQNCcY50gopXglYKE1SzmsKsUKjlJNC4QQx5SVVampEJAlZAji3tf96n2by701uxBXNsrIifnIZGNX8tuvJUGQYRr4x57f2-an1c7LTdPaOkSUmKUQQ5IkLFCwpwrbOGd1dfZFUHa9y9C77HqXp96D5KGXGK31GReUU445-QfCFYAs</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Han, Dongyu</creator><creator>Liu, Kun</creator><creator>Sandberg, Henrik</creator><creator>Chai, Senchun</creator><creator>Xia, Yuanqing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><orcidid>https://orcid.org/0000-0002-5977-4911</orcidid><orcidid>https://orcid.org/0000-0003-1835-2963</orcidid><orcidid>https://orcid.org/0000-0003-3408-9827</orcidid><orcidid>https://orcid.org/0000-0003-1910-1795</orcidid><orcidid>https://orcid.org/0000-0003-3074-7167</orcidid></search><sort><creationdate>20220601</creationdate><title>Privacy-Preserving Dual Averaging With Arbitrary Initial Conditions for Distributed Optimization</title><author>Han, Dongyu ; Liu, Kun ; Sandberg, Henrik ; Chai, Senchun ; Xia, Yuanqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-a3bac361f4ddce4b322b19aaa8f90cee6780ffa6c817e4c1118246dfde4990653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Cost function</topic><topic>Distributed optimization</topic><topic>dual averaging algorithm</topic><topic>Fisher information</topic><topic>Heuristic algorithms</topic><topic>Initial conditions</topic><topic>multiagent network</topic><topic>Multiagent systems</topic><topic>Optimization</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Privacy</topic><topic>privacy preservation</topic><topic>Probability density function</topic><topic>Probability density functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Dongyu</creatorcontrib><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Sandberg, Henrik</creatorcontrib><creatorcontrib>Chai, Senchun</creatorcontrib><creatorcontrib>Xia, Yuanqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han, Dongyu</au><au>Liu, Kun</au><au>Sandberg, Henrik</au><au>Chai, Senchun</au><au>Xia, Yuanqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Privacy-Preserving Dual Averaging With Arbitrary Initial Conditions for Distributed Optimization</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>67</volume><issue>6</issue><spage>3172</spage><epage>3179</epage><pages>3172-3179</pages><issn>0018-9286</issn><issn>1558-2523</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This article considers a privacy-concerned distributed optimization problem over multiagent networks, in which malicious agents exist and try to infer the privacy information of the normal ones. We propose a novel dual averaging algorithm which involves the use of a correlated perturbation mechanism to preserve the privacy of the normal agents. It is shown that our algorithm achieves deterministic convergence under arbitrary initial conditions and the privacy preservation is guaranteed. Moreover, a probability density function of the perturbation is given to maximize the degree of privacy measured by the trace of the Fisher information matrix. Finally, a numerical example is provided to illustrate the effectiveness of our algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2021.3097295</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5977-4911</orcidid><orcidid>https://orcid.org/0000-0003-1835-2963</orcidid><orcidid>https://orcid.org/0000-0003-3408-9827</orcidid><orcidid>https://orcid.org/0000-0003-1910-1795</orcidid><orcidid>https://orcid.org/0000-0003-3074-7167</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2022-06, Vol.67 (6), p.3172-3179 |
issn | 0018-9286 1558-2523 1558-2523 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAC_2021_3097295 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Convergence Cost function Distributed optimization dual averaging algorithm Fisher information Heuristic algorithms Initial conditions multiagent network Multiagent systems Optimization Perturbation Perturbation methods Privacy privacy preservation Probability density function Probability density functions |
title | Privacy-Preserving Dual Averaging With Arbitrary Initial Conditions for Distributed Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Privacy-Preserving%20Dual%20Averaging%20With%20Arbitrary%20Initial%20Conditions%20for%20Distributed%20Optimization&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Han,%20Dongyu&rft.date=2022-06-01&rft.volume=67&rft.issue=6&rft.spage=3172&rft.epage=3179&rft.pages=3172-3179&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2021.3097295&rft_dat=%3Cproquest_RIE%3E2670203556%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2670203556&rft_id=info:pmid/&rft_ieee_id=9484828&rfr_iscdi=true |