Pareto Optimal Multirobot Motion Planning

This article studies a class of multirobot coordination problems where a team of robots aim to reach their goal regions with minimum time and avoid collisions with obstacles and other robots. A novel numerical algorithm is proposed to identify the Pareto optimal solutions where no robot can unilater...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2021-09, Vol.66 (9), p.3984-3999
Hauptverfasser: Zhao, Guoxiang, Zhu, Minghui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3999
container_issue 9
container_start_page 3984
container_title IEEE transactions on automatic control
container_volume 66
creator Zhao, Guoxiang
Zhu, Minghui
description This article studies a class of multirobot coordination problems where a team of robots aim to reach their goal regions with minimum time and avoid collisions with obstacles and other robots. A novel numerical algorithm is proposed to identify the Pareto optimal solutions where no robot can unilaterally reduce its traveling time without extending others'. The consistent approximation of the algorithm in the epigraphical profile sense is guaranteed using set-valued numerical analysis. Experiments on an indoor multirobot platform and computer simulations show the anytime property of the proposed algorithm, i.e., it is able to quickly return a feasible control policy that safely steers the robots to their goal regions and it keeps improving policy optimality if more time is given.
doi_str_mv 10.1109/TAC.2020.3025870
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2020_3025870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9204457</ieee_id><sourcerecordid>2565239514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-7d5f32a83992269c09633c5879d406ad9be0c51d26def8df8a26839a6f2b52763</originalsourceid><addsrcrecordid>eNo9kD1rwzAQhkVpoW7avdDF0KmD3dPJkqUxhH5BQjKks5BtuTi4livLQ_99FRI6HQfPex8PIfcUckpBPe-XqxwBIWeAXJZwQRLKucyQI7skCQCVmUIprsnNNB1iK4qCJuRpZ7wNLt2Oofs2fbqZ-9B5V7mQblzo3JDuejMM3fB1S65a00_27lwX5PP1Zb96z9bbt4_Vcp3VKFjIyoa3DI1kSiEKVYMSjNXxItUUIEyjKgs1pw2KxrayaaVBEWEjWqw4loItyONp7ujdz2ynoA9u9kNcqZGL-I3itIgUnKjau2nyttWjjw_4X01BH4XoKEQfheizkBh5OEU6a-0_rhCKgpfsDwjCWc8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565239514</pqid></control><display><type>article</type><title>Pareto Optimal Multirobot Motion Planning</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Guoxiang ; Zhu, Minghui</creator><creatorcontrib>Zhao, Guoxiang ; Zhu, Minghui</creatorcontrib><description>This article studies a class of multirobot coordination problems where a team of robots aim to reach their goal regions with minimum time and avoid collisions with obstacles and other robots. A novel numerical algorithm is proposed to identify the Pareto optimal solutions where no robot can unilaterally reduce its traveling time without extending others'. The consistent approximation of the algorithm in the epigraphical profile sense is guaranteed using set-valued numerical analysis. Experiments on an indoor multirobot platform and computer simulations show the anytime property of the proposed algorithm, i.e., it is able to quickly return a feasible control policy that safely steers the robots to their goal regions and it keeps improving policy optimality if more time is given.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2020.3025870</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Collision avoidance ; Heuristic algorithms ; Motion planning ; Multiple robots ; Multirobot coordination ; Numerical analysis ; Optimization ; Pareto optimality ; Pareto optimization ; Pareto optimum ; Planning ; Robot motion ; Robot sensing systems ; robotic motion planning ; Robots ; Travel time</subject><ispartof>IEEE transactions on automatic control, 2021-09, Vol.66 (9), p.3984-3999</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-7d5f32a83992269c09633c5879d406ad9be0c51d26def8df8a26839a6f2b52763</citedby><cites>FETCH-LOGICAL-c263t-7d5f32a83992269c09633c5879d406ad9be0c51d26def8df8a26839a6f2b52763</cites><orcidid>0000-0001-8904-6141 ; 0000-0003-3879-7820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9204457$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9204457$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Guoxiang</creatorcontrib><creatorcontrib>Zhu, Minghui</creatorcontrib><title>Pareto Optimal Multirobot Motion Planning</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This article studies a class of multirobot coordination problems where a team of robots aim to reach their goal regions with minimum time and avoid collisions with obstacles and other robots. A novel numerical algorithm is proposed to identify the Pareto optimal solutions where no robot can unilaterally reduce its traveling time without extending others'. The consistent approximation of the algorithm in the epigraphical profile sense is guaranteed using set-valued numerical analysis. Experiments on an indoor multirobot platform and computer simulations show the anytime property of the proposed algorithm, i.e., it is able to quickly return a feasible control policy that safely steers the robots to their goal regions and it keeps improving policy optimality if more time is given.</description><subject>Algorithms</subject><subject>Collision avoidance</subject><subject>Heuristic algorithms</subject><subject>Motion planning</subject><subject>Multiple robots</subject><subject>Multirobot coordination</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>Pareto optimality</subject><subject>Pareto optimization</subject><subject>Pareto optimum</subject><subject>Planning</subject><subject>Robot motion</subject><subject>Robot sensing systems</subject><subject>robotic motion planning</subject><subject>Robots</subject><subject>Travel time</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1rwzAQhkVpoW7avdDF0KmD3dPJkqUxhH5BQjKks5BtuTi4livLQ_99FRI6HQfPex8PIfcUckpBPe-XqxwBIWeAXJZwQRLKucyQI7skCQCVmUIprsnNNB1iK4qCJuRpZ7wNLt2Oofs2fbqZ-9B5V7mQblzo3JDuejMM3fB1S65a00_27lwX5PP1Zb96z9bbt4_Vcp3VKFjIyoa3DI1kSiEKVYMSjNXxItUUIEyjKgs1pw2KxrayaaVBEWEjWqw4loItyONp7ujdz2ynoA9u9kNcqZGL-I3itIgUnKjau2nyttWjjw_4X01BH4XoKEQfheizkBh5OEU6a-0_rhCKgpfsDwjCWc8</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Zhao, Guoxiang</creator><creator>Zhu, Minghui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8904-6141</orcidid><orcidid>https://orcid.org/0000-0003-3879-7820</orcidid></search><sort><creationdate>20210901</creationdate><title>Pareto Optimal Multirobot Motion Planning</title><author>Zhao, Guoxiang ; Zhu, Minghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-7d5f32a83992269c09633c5879d406ad9be0c51d26def8df8a26839a6f2b52763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Collision avoidance</topic><topic>Heuristic algorithms</topic><topic>Motion planning</topic><topic>Multiple robots</topic><topic>Multirobot coordination</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>Pareto optimality</topic><topic>Pareto optimization</topic><topic>Pareto optimum</topic><topic>Planning</topic><topic>Robot motion</topic><topic>Robot sensing systems</topic><topic>robotic motion planning</topic><topic>Robots</topic><topic>Travel time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Guoxiang</creatorcontrib><creatorcontrib>Zhu, Minghui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Guoxiang</au><au>Zhu, Minghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pareto Optimal Multirobot Motion Planning</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>66</volume><issue>9</issue><spage>3984</spage><epage>3999</epage><pages>3984-3999</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This article studies a class of multirobot coordination problems where a team of robots aim to reach their goal regions with minimum time and avoid collisions with obstacles and other robots. A novel numerical algorithm is proposed to identify the Pareto optimal solutions where no robot can unilaterally reduce its traveling time without extending others'. The consistent approximation of the algorithm in the epigraphical profile sense is guaranteed using set-valued numerical analysis. Experiments on an indoor multirobot platform and computer simulations show the anytime property of the proposed algorithm, i.e., it is able to quickly return a feasible control policy that safely steers the robots to their goal regions and it keeps improving policy optimality if more time is given.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2020.3025870</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8904-6141</orcidid><orcidid>https://orcid.org/0000-0003-3879-7820</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2021-09, Vol.66 (9), p.3984-3999
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_2020_3025870
source IEEE Electronic Library (IEL)
subjects Algorithms
Collision avoidance
Heuristic algorithms
Motion planning
Multiple robots
Multirobot coordination
Numerical analysis
Optimization
Pareto optimality
Pareto optimization
Pareto optimum
Planning
Robot motion
Robot sensing systems
robotic motion planning
Robots
Travel time
title Pareto Optimal Multirobot Motion Planning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A59%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pareto%20Optimal%20Multirobot%20Motion%20Planning&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Zhao,%20Guoxiang&rft.date=2021-09-01&rft.volume=66&rft.issue=9&rft.spage=3984&rft.epage=3999&rft.pages=3984-3999&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2020.3025870&rft_dat=%3Cproquest_RIE%3E2565239514%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565239514&rft_id=info:pmid/&rft_ieee_id=9204457&rfr_iscdi=true