Inverse Open-Loop Noncooperative Differential Games and Inverse Optimal Control
We consider the problem of computing parameters of player cost functionals such that given state and control trajectories constitute an open-loop Nash equilibrium for a noncooperative differential game. We propose two methods for solving this inverse differential game problem and novel conditions un...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2020-02, Vol.65 (2), p.897-904 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 904 |
---|---|
container_issue | 2 |
container_start_page | 897 |
container_title | IEEE transactions on automatic control |
container_volume | 65 |
creator | Molloy, Timothy L. Inga, Jairo Flad, Michael Ford, Jason J. Perez, Tristan Hohmann, Soren |
description | We consider the problem of computing parameters of player cost functionals such that given state and control trajectories constitute an open-loop Nash equilibrium for a noncooperative differential game. We propose two methods for solving this inverse differential game problem and novel conditions under which our methods compute unique cost-functional parameters. Our conditions are analogous to persistence of excitation conditions in adaptive control and parameter estimation. The efficacy of our methods is illustrated in simulations. |
doi_str_mv | 10.1109/TAC.2019.2921835 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2019_2921835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8733901</ieee_id><sourcerecordid>2349142654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-6f728ecdfb9932574ef98e6bd315983b461314f06ee29bf6fed73b0ee95a29e73</originalsourceid><addsrcrecordid>eNpFkM1LAzEQxYMoWKt3wcuC561JJskmx7JqLRR7qeewHxPY0m7WZFvwvzelRU-PYd6befwIeWR0xhg1L5t5OeOUmRk3nGmQV2TCpNQ5lxyuyYRSpnPDtboldzFu06iEYBOyXvZHDBGz9YB9vvJ-yD593yTFUI3dEbPXzjkM2I9dtcsW1R5jVvVt9p8bu33alL4fg9_dkxtX7SI-XHRKvt7fNuVHvlovluV8lTcAMObKFVxj07raGOCyEOiMRlW3wKTRUAvFgAlHFSI3tVMO2wJqimhkxQ0WMCXP57tD8N8HjKPd-kPo00vLQRgmuJIiuejZ1QQfY0Bnh5Dahh_LqD1hswmbPWGzF2wp8nSOdIj4Z9cFgKEMfgHumWi3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2349142654</pqid></control><display><type>article</type><title>Inverse Open-Loop Noncooperative Differential Games and Inverse Optimal Control</title><source>IEEE Electronic Library (IEL)</source><creator>Molloy, Timothy L. ; Inga, Jairo ; Flad, Michael ; Ford, Jason J. ; Perez, Tristan ; Hohmann, Soren</creator><creatorcontrib>Molloy, Timothy L. ; Inga, Jairo ; Flad, Michael ; Ford, Jason J. ; Perez, Tristan ; Hohmann, Soren</creatorcontrib><description>We consider the problem of computing parameters of player cost functionals such that given state and control trajectories constitute an open-loop Nash equilibrium for a noncooperative differential game. We propose two methods for solving this inverse differential game problem and novel conditions under which our methods compute unique cost-functional parameters. Our conditions are analogous to persistence of excitation conditions in adaptive control and parameter estimation. The efficacy of our methods is illustrated in simulations.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2019.2921835</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Australia ; Computer simulation ; Differential equations ; Differential games ; Economic models ; Game theory ; Games ; inverse differential games ; inverse optimal control ; Nash equilibrium ; Optimal control ; Optimization ; Parameter estimation ; Trajectory ; Trajectory control</subject><ispartof>IEEE transactions on automatic control, 2020-02, Vol.65 (2), p.897-904</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-6f728ecdfb9932574ef98e6bd315983b461314f06ee29bf6fed73b0ee95a29e73</citedby><cites>FETCH-LOGICAL-c333t-6f728ecdfb9932574ef98e6bd315983b461314f06ee29bf6fed73b0ee95a29e73</cites><orcidid>0000-0003-3252-6632 ; 0000-0001-6554-9457 ; 0000-0003-1486-2202 ; 0000-0002-4170-1431 ; 0000-0002-6797-5617 ; 0000-0001-5847-6253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8733901$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8733901$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Molloy, Timothy L.</creatorcontrib><creatorcontrib>Inga, Jairo</creatorcontrib><creatorcontrib>Flad, Michael</creatorcontrib><creatorcontrib>Ford, Jason J.</creatorcontrib><creatorcontrib>Perez, Tristan</creatorcontrib><creatorcontrib>Hohmann, Soren</creatorcontrib><title>Inverse Open-Loop Noncooperative Differential Games and Inverse Optimal Control</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We consider the problem of computing parameters of player cost functionals such that given state and control trajectories constitute an open-loop Nash equilibrium for a noncooperative differential game. We propose two methods for solving this inverse differential game problem and novel conditions under which our methods compute unique cost-functional parameters. Our conditions are analogous to persistence of excitation conditions in adaptive control and parameter estimation. The efficacy of our methods is illustrated in simulations.</description><subject>Adaptive control</subject><subject>Australia</subject><subject>Computer simulation</subject><subject>Differential equations</subject><subject>Differential games</subject><subject>Economic models</subject><subject>Game theory</subject><subject>Games</subject><subject>inverse differential games</subject><subject>inverse optimal control</subject><subject>Nash equilibrium</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Trajectory</subject><subject>Trajectory control</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkM1LAzEQxYMoWKt3wcuC561JJskmx7JqLRR7qeewHxPY0m7WZFvwvzelRU-PYd6befwIeWR0xhg1L5t5OeOUmRk3nGmQV2TCpNQ5lxyuyYRSpnPDtboldzFu06iEYBOyXvZHDBGz9YB9vvJ-yD593yTFUI3dEbPXzjkM2I9dtcsW1R5jVvVt9p8bu33alL4fg9_dkxtX7SI-XHRKvt7fNuVHvlovluV8lTcAMObKFVxj07raGOCyEOiMRlW3wKTRUAvFgAlHFSI3tVMO2wJqimhkxQ0WMCXP57tD8N8HjKPd-kPo00vLQRgmuJIiuejZ1QQfY0Bnh5Dahh_LqD1hswmbPWGzF2wp8nSOdIj4Z9cFgKEMfgHumWi3</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Molloy, Timothy L.</creator><creator>Inga, Jairo</creator><creator>Flad, Michael</creator><creator>Ford, Jason J.</creator><creator>Perez, Tristan</creator><creator>Hohmann, Soren</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3252-6632</orcidid><orcidid>https://orcid.org/0000-0001-6554-9457</orcidid><orcidid>https://orcid.org/0000-0003-1486-2202</orcidid><orcidid>https://orcid.org/0000-0002-4170-1431</orcidid><orcidid>https://orcid.org/0000-0002-6797-5617</orcidid><orcidid>https://orcid.org/0000-0001-5847-6253</orcidid></search><sort><creationdate>20200201</creationdate><title>Inverse Open-Loop Noncooperative Differential Games and Inverse Optimal Control</title><author>Molloy, Timothy L. ; Inga, Jairo ; Flad, Michael ; Ford, Jason J. ; Perez, Tristan ; Hohmann, Soren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-6f728ecdfb9932574ef98e6bd315983b461314f06ee29bf6fed73b0ee95a29e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive control</topic><topic>Australia</topic><topic>Computer simulation</topic><topic>Differential equations</topic><topic>Differential games</topic><topic>Economic models</topic><topic>Game theory</topic><topic>Games</topic><topic>inverse differential games</topic><topic>inverse optimal control</topic><topic>Nash equilibrium</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Trajectory</topic><topic>Trajectory control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molloy, Timothy L.</creatorcontrib><creatorcontrib>Inga, Jairo</creatorcontrib><creatorcontrib>Flad, Michael</creatorcontrib><creatorcontrib>Ford, Jason J.</creatorcontrib><creatorcontrib>Perez, Tristan</creatorcontrib><creatorcontrib>Hohmann, Soren</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Molloy, Timothy L.</au><au>Inga, Jairo</au><au>Flad, Michael</au><au>Ford, Jason J.</au><au>Perez, Tristan</au><au>Hohmann, Soren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse Open-Loop Noncooperative Differential Games and Inverse Optimal Control</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>65</volume><issue>2</issue><spage>897</spage><epage>904</epage><pages>897-904</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We consider the problem of computing parameters of player cost functionals such that given state and control trajectories constitute an open-loop Nash equilibrium for a noncooperative differential game. We propose two methods for solving this inverse differential game problem and novel conditions under which our methods compute unique cost-functional parameters. Our conditions are analogous to persistence of excitation conditions in adaptive control and parameter estimation. The efficacy of our methods is illustrated in simulations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2019.2921835</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3252-6632</orcidid><orcidid>https://orcid.org/0000-0001-6554-9457</orcidid><orcidid>https://orcid.org/0000-0003-1486-2202</orcidid><orcidid>https://orcid.org/0000-0002-4170-1431</orcidid><orcidid>https://orcid.org/0000-0002-6797-5617</orcidid><orcidid>https://orcid.org/0000-0001-5847-6253</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2020-02, Vol.65 (2), p.897-904 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAC_2019_2921835 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive control Australia Computer simulation Differential equations Differential games Economic models Game theory Games inverse differential games inverse optimal control Nash equilibrium Optimal control Optimization Parameter estimation Trajectory Trajectory control |
title | Inverse Open-Loop Noncooperative Differential Games and Inverse Optimal Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20Open-Loop%20Noncooperative%20Differential%20Games%20and%20Inverse%20Optimal%20Control&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Molloy,%20Timothy%20L.&rft.date=2020-02-01&rft.volume=65&rft.issue=2&rft.spage=897&rft.epage=904&rft.pages=897-904&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2019.2921835&rft_dat=%3Cproquest_RIE%3E2349142654%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2349142654&rft_id=info:pmid/&rft_ieee_id=8733901&rfr_iscdi=true |