Inverse Open-Loop Noncooperative Differential Games and Inverse Optimal Control

We consider the problem of computing parameters of player cost functionals such that given state and control trajectories constitute an open-loop Nash equilibrium for a noncooperative differential game. We propose two methods for solving this inverse differential game problem and novel conditions un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2020-02, Vol.65 (2), p.897-904
Hauptverfasser: Molloy, Timothy L., Inga, Jairo, Flad, Michael, Ford, Jason J., Perez, Tristan, Hohmann, Soren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 904
container_issue 2
container_start_page 897
container_title IEEE transactions on automatic control
container_volume 65
creator Molloy, Timothy L.
Inga, Jairo
Flad, Michael
Ford, Jason J.
Perez, Tristan
Hohmann, Soren
description We consider the problem of computing parameters of player cost functionals such that given state and control trajectories constitute an open-loop Nash equilibrium for a noncooperative differential game. We propose two methods for solving this inverse differential game problem and novel conditions under which our methods compute unique cost-functional parameters. Our conditions are analogous to persistence of excitation conditions in adaptive control and parameter estimation. The efficacy of our methods is illustrated in simulations.
doi_str_mv 10.1109/TAC.2019.2921835
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2019_2921835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8733901</ieee_id><sourcerecordid>2349142654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-6f728ecdfb9932574ef98e6bd315983b461314f06ee29bf6fed73b0ee95a29e73</originalsourceid><addsrcrecordid>eNpFkM1LAzEQxYMoWKt3wcuC561JJskmx7JqLRR7qeewHxPY0m7WZFvwvzelRU-PYd6befwIeWR0xhg1L5t5OeOUmRk3nGmQV2TCpNQ5lxyuyYRSpnPDtboldzFu06iEYBOyXvZHDBGz9YB9vvJ-yD593yTFUI3dEbPXzjkM2I9dtcsW1R5jVvVt9p8bu33alL4fg9_dkxtX7SI-XHRKvt7fNuVHvlovluV8lTcAMObKFVxj07raGOCyEOiMRlW3wKTRUAvFgAlHFSI3tVMO2wJqimhkxQ0WMCXP57tD8N8HjKPd-kPo00vLQRgmuJIiuejZ1QQfY0Bnh5Dahh_LqD1hswmbPWGzF2wp8nSOdIj4Z9cFgKEMfgHumWi3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2349142654</pqid></control><display><type>article</type><title>Inverse Open-Loop Noncooperative Differential Games and Inverse Optimal Control</title><source>IEEE Electronic Library (IEL)</source><creator>Molloy, Timothy L. ; Inga, Jairo ; Flad, Michael ; Ford, Jason J. ; Perez, Tristan ; Hohmann, Soren</creator><creatorcontrib>Molloy, Timothy L. ; Inga, Jairo ; Flad, Michael ; Ford, Jason J. ; Perez, Tristan ; Hohmann, Soren</creatorcontrib><description>We consider the problem of computing parameters of player cost functionals such that given state and control trajectories constitute an open-loop Nash equilibrium for a noncooperative differential game. We propose two methods for solving this inverse differential game problem and novel conditions under which our methods compute unique cost-functional parameters. Our conditions are analogous to persistence of excitation conditions in adaptive control and parameter estimation. The efficacy of our methods is illustrated in simulations.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2019.2921835</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Australia ; Computer simulation ; Differential equations ; Differential games ; Economic models ; Game theory ; Games ; inverse differential games ; inverse optimal control ; Nash equilibrium ; Optimal control ; Optimization ; Parameter estimation ; Trajectory ; Trajectory control</subject><ispartof>IEEE transactions on automatic control, 2020-02, Vol.65 (2), p.897-904</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-6f728ecdfb9932574ef98e6bd315983b461314f06ee29bf6fed73b0ee95a29e73</citedby><cites>FETCH-LOGICAL-c333t-6f728ecdfb9932574ef98e6bd315983b461314f06ee29bf6fed73b0ee95a29e73</cites><orcidid>0000-0003-3252-6632 ; 0000-0001-6554-9457 ; 0000-0003-1486-2202 ; 0000-0002-4170-1431 ; 0000-0002-6797-5617 ; 0000-0001-5847-6253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8733901$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8733901$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Molloy, Timothy L.</creatorcontrib><creatorcontrib>Inga, Jairo</creatorcontrib><creatorcontrib>Flad, Michael</creatorcontrib><creatorcontrib>Ford, Jason J.</creatorcontrib><creatorcontrib>Perez, Tristan</creatorcontrib><creatorcontrib>Hohmann, Soren</creatorcontrib><title>Inverse Open-Loop Noncooperative Differential Games and Inverse Optimal Control</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We consider the problem of computing parameters of player cost functionals such that given state and control trajectories constitute an open-loop Nash equilibrium for a noncooperative differential game. We propose two methods for solving this inverse differential game problem and novel conditions under which our methods compute unique cost-functional parameters. Our conditions are analogous to persistence of excitation conditions in adaptive control and parameter estimation. The efficacy of our methods is illustrated in simulations.</description><subject>Adaptive control</subject><subject>Australia</subject><subject>Computer simulation</subject><subject>Differential equations</subject><subject>Differential games</subject><subject>Economic models</subject><subject>Game theory</subject><subject>Games</subject><subject>inverse differential games</subject><subject>inverse optimal control</subject><subject>Nash equilibrium</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Trajectory</subject><subject>Trajectory control</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkM1LAzEQxYMoWKt3wcuC561JJskmx7JqLRR7qeewHxPY0m7WZFvwvzelRU-PYd6befwIeWR0xhg1L5t5OeOUmRk3nGmQV2TCpNQ5lxyuyYRSpnPDtboldzFu06iEYBOyXvZHDBGz9YB9vvJ-yD593yTFUI3dEbPXzjkM2I9dtcsW1R5jVvVt9p8bu33alL4fg9_dkxtX7SI-XHRKvt7fNuVHvlovluV8lTcAMObKFVxj07raGOCyEOiMRlW3wKTRUAvFgAlHFSI3tVMO2wJqimhkxQ0WMCXP57tD8N8HjKPd-kPo00vLQRgmuJIiuejZ1QQfY0Bnh5Dahh_LqD1hswmbPWGzF2wp8nSOdIj4Z9cFgKEMfgHumWi3</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Molloy, Timothy L.</creator><creator>Inga, Jairo</creator><creator>Flad, Michael</creator><creator>Ford, Jason J.</creator><creator>Perez, Tristan</creator><creator>Hohmann, Soren</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3252-6632</orcidid><orcidid>https://orcid.org/0000-0001-6554-9457</orcidid><orcidid>https://orcid.org/0000-0003-1486-2202</orcidid><orcidid>https://orcid.org/0000-0002-4170-1431</orcidid><orcidid>https://orcid.org/0000-0002-6797-5617</orcidid><orcidid>https://orcid.org/0000-0001-5847-6253</orcidid></search><sort><creationdate>20200201</creationdate><title>Inverse Open-Loop Noncooperative Differential Games and Inverse Optimal Control</title><author>Molloy, Timothy L. ; Inga, Jairo ; Flad, Michael ; Ford, Jason J. ; Perez, Tristan ; Hohmann, Soren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-6f728ecdfb9932574ef98e6bd315983b461314f06ee29bf6fed73b0ee95a29e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive control</topic><topic>Australia</topic><topic>Computer simulation</topic><topic>Differential equations</topic><topic>Differential games</topic><topic>Economic models</topic><topic>Game theory</topic><topic>Games</topic><topic>inverse differential games</topic><topic>inverse optimal control</topic><topic>Nash equilibrium</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Trajectory</topic><topic>Trajectory control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molloy, Timothy L.</creatorcontrib><creatorcontrib>Inga, Jairo</creatorcontrib><creatorcontrib>Flad, Michael</creatorcontrib><creatorcontrib>Ford, Jason J.</creatorcontrib><creatorcontrib>Perez, Tristan</creatorcontrib><creatorcontrib>Hohmann, Soren</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Molloy, Timothy L.</au><au>Inga, Jairo</au><au>Flad, Michael</au><au>Ford, Jason J.</au><au>Perez, Tristan</au><au>Hohmann, Soren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse Open-Loop Noncooperative Differential Games and Inverse Optimal Control</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>65</volume><issue>2</issue><spage>897</spage><epage>904</epage><pages>897-904</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We consider the problem of computing parameters of player cost functionals such that given state and control trajectories constitute an open-loop Nash equilibrium for a noncooperative differential game. We propose two methods for solving this inverse differential game problem and novel conditions under which our methods compute unique cost-functional parameters. Our conditions are analogous to persistence of excitation conditions in adaptive control and parameter estimation. The efficacy of our methods is illustrated in simulations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2019.2921835</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3252-6632</orcidid><orcidid>https://orcid.org/0000-0001-6554-9457</orcidid><orcidid>https://orcid.org/0000-0003-1486-2202</orcidid><orcidid>https://orcid.org/0000-0002-4170-1431</orcidid><orcidid>https://orcid.org/0000-0002-6797-5617</orcidid><orcidid>https://orcid.org/0000-0001-5847-6253</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2020-02, Vol.65 (2), p.897-904
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_2019_2921835
source IEEE Electronic Library (IEL)
subjects Adaptive control
Australia
Computer simulation
Differential equations
Differential games
Economic models
Game theory
Games
inverse differential games
inverse optimal control
Nash equilibrium
Optimal control
Optimization
Parameter estimation
Trajectory
Trajectory control
title Inverse Open-Loop Noncooperative Differential Games and Inverse Optimal Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20Open-Loop%20Noncooperative%20Differential%20Games%20and%20Inverse%20Optimal%20Control&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Molloy,%20Timothy%20L.&rft.date=2020-02-01&rft.volume=65&rft.issue=2&rft.spage=897&rft.epage=904&rft.pages=897-904&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2019.2921835&rft_dat=%3Cproquest_RIE%3E2349142654%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2349142654&rft_id=info:pmid/&rft_ieee_id=8733901&rfr_iscdi=true