Notions of Centralized and Decentralized Opacity in Linear Systems
We formulate notions of opacity for cyberphysical systems modeled as discrete-time linear time-invariant systems. A set of secret states is k-ISO with respect to a set of nonsecret states if, starting from these sets at time 0, the outputs at time k are indistinguishable to an adversarial observer....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2020-04, Vol.65 (4), p.1442-1455 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1455 |
---|---|
container_issue | 4 |
container_start_page | 1442 |
container_title | IEEE transactions on automatic control |
container_volume | 65 |
creator | Ramasubramanian, Bhaskar Cleaveland, Rance Marcus, Steven I. |
description | We formulate notions of opacity for cyberphysical systems modeled as discrete-time linear time-invariant systems. A set of secret states is k-ISO with respect to a set of nonsecret states if, starting from these sets at time 0, the outputs at time k are indistinguishable to an adversarial observer. Necessary and sufficient conditions to ensure that a secret specification is k-ISO are established in terms of sets of reachable states. We also show how to adapt techniques for computing underapproximations and overapproximations of the set of reachable states of dynamical systems in order to soundly approximate k-ISO. Furthermore, we provide a condition for output controllability, if k-ISO holds, and show that the converse holds under an additional assumption. We extend the theory of opacity for single-adversary systems to the case of multiple adversaries and develop several notions of decentralized opacity. We study the following scenarios: first, the presence or lack of a centralized coordinator, and, second, the presence or absence of collusion among adversaries. In the case of colluding adversaries, we derive a condition for nonopacity that depends on the structure of the directed graph representing the communication between adversaries. Finally, we relax the condition that the outputs be indistinguishable and define a notion of \epsilon-opacity, and also provide an extension to the case of nonlinear systems. |
doi_str_mv | 10.1109/TAC.2019.2920837 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2019_2920837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8730432</ieee_id><sourcerecordid>2384317575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-be6bed6e98660f007bb66188d32048f369a62284102ad386ddc629fd0d1bdfe83</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3wUvA89ZJsptNjnX9hMUerOeQ3Uwgpd2tyfZQf71bWsTT8A7POwMPIbcMZoyBfljOqxkHpmdcc1CiPCMTVhQq4wUX52QCwFSmuZKX5Cql1RhlnrMJefzoh9B3ifaeVtgN0a7DDzpqO0efsP23WWxtG4Y9DR2tQ4c20s99GnCTrsmFt-uEN6c5JV8vz8vqLasXr-_VvM5aIcSQNSgbdBK1khI8QNk0UjKlnOCQKy-ktpJzlTPg1gklnWsl196BY43zqMSU3B_vbmP_vcM0mFW_i9340nChcsHKoixGCo5UG_uUInqzjWFj494wMAdTZjRlDqbMydRYuTtWAiL-4aoUkAsufgF3-WOC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384317575</pqid></control><display><type>article</type><title>Notions of Centralized and Decentralized Opacity in Linear Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Ramasubramanian, Bhaskar ; Cleaveland, Rance ; Marcus, Steven I.</creator><creatorcontrib>Ramasubramanian, Bhaskar ; Cleaveland, Rance ; Marcus, Steven I.</creatorcontrib><description><![CDATA[We formulate notions of opacity for cyberphysical systems modeled as discrete-time linear time-invariant systems. A set of secret states is <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-ISO with respect to a set of nonsecret states if, starting from these sets at time 0, the outputs at time <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> are indistinguishable to an adversarial observer. Necessary and sufficient conditions to ensure that a secret specification is <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-ISO are established in terms of sets of reachable states. We also show how to adapt techniques for computing underapproximations and overapproximations of the set of reachable states of dynamical systems in order to soundly approximate <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-ISO. Furthermore, we provide a condition for output controllability, if <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-ISO holds, and show that the converse holds under an additional assumption. We extend the theory of opacity for single-adversary systems to the case of multiple adversaries and develop several notions of decentralized opacity. We study the following scenarios: first, the presence or lack of a centralized coordinator, and, second, the presence or absence of collusion among adversaries. In the case of colluding adversaries, we derive a condition for nonopacity that depends on the structure of the directed graph representing the communication between adversaries. Finally, we relax the condition that the outputs be indistinguishable and define a notion of <inline-formula><tex-math notation="LaTeX">\epsilon</tex-math></inline-formula>-opacity, and also provide an extension to the case of nonlinear systems.]]></description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2019.2920837</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><![CDATA[<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> epsilon - k</tex-math> </inline-formula>-ISO ; <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> k</tex-math> </inline-formula>-ISO ; Automata ; Computers ; Controllability ; Cyber-physical systems ; Discrete time systems ; Discrete-event systems ; Graph theory ; Graphical representations ; Linear systems ; Nonlinear systems ; nonsecret states ; Observers ; Opacity ; output controllability ; reachable sets ; secret states ; Time invariant systems ; Trajectory]]></subject><ispartof>IEEE transactions on automatic control, 2020-04, Vol.65 (4), p.1442-1455</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-be6bed6e98660f007bb66188d32048f369a62284102ad386ddc629fd0d1bdfe83</citedby><cites>FETCH-LOGICAL-c333t-be6bed6e98660f007bb66188d32048f369a62284102ad386ddc629fd0d1bdfe83</cites><orcidid>0000-0002-2166-7838 ; 0000-0002-4926-9567 ; 0000-0002-4952-5380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8730432$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8730432$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ramasubramanian, Bhaskar</creatorcontrib><creatorcontrib>Cleaveland, Rance</creatorcontrib><creatorcontrib>Marcus, Steven I.</creatorcontrib><title>Notions of Centralized and Decentralized Opacity in Linear Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description><![CDATA[We formulate notions of opacity for cyberphysical systems modeled as discrete-time linear time-invariant systems. A set of secret states is <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-ISO with respect to a set of nonsecret states if, starting from these sets at time 0, the outputs at time <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> are indistinguishable to an adversarial observer. Necessary and sufficient conditions to ensure that a secret specification is <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-ISO are established in terms of sets of reachable states. We also show how to adapt techniques for computing underapproximations and overapproximations of the set of reachable states of dynamical systems in order to soundly approximate <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-ISO. Furthermore, we provide a condition for output controllability, if <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-ISO holds, and show that the converse holds under an additional assumption. We extend the theory of opacity for single-adversary systems to the case of multiple adversaries and develop several notions of decentralized opacity. We study the following scenarios: first, the presence or lack of a centralized coordinator, and, second, the presence or absence of collusion among adversaries. In the case of colluding adversaries, we derive a condition for nonopacity that depends on the structure of the directed graph representing the communication between adversaries. Finally, we relax the condition that the outputs be indistinguishable and define a notion of <inline-formula><tex-math notation="LaTeX">\epsilon</tex-math></inline-formula>-opacity, and also provide an extension to the case of nonlinear systems.]]></description><subject><inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> epsilon - k</tex-math> </inline-formula>-ISO</subject><subject><inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> k</tex-math> </inline-formula>-ISO</subject><subject>Automata</subject><subject>Computers</subject><subject>Controllability</subject><subject>Cyber-physical systems</subject><subject>Discrete time systems</subject><subject>Discrete-event systems</subject><subject>Graph theory</subject><subject>Graphical representations</subject><subject>Linear systems</subject><subject>Nonlinear systems</subject><subject>nonsecret states</subject><subject>Observers</subject><subject>Opacity</subject><subject>output controllability</subject><subject>reachable sets</subject><subject>secret states</subject><subject>Time invariant systems</subject><subject>Trajectory</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKt3wUvA89ZJsptNjnX9hMUerOeQ3Uwgpd2tyfZQf71bWsTT8A7POwMPIbcMZoyBfljOqxkHpmdcc1CiPCMTVhQq4wUX52QCwFSmuZKX5Cql1RhlnrMJefzoh9B3ifaeVtgN0a7DDzpqO0efsP23WWxtG4Y9DR2tQ4c20s99GnCTrsmFt-uEN6c5JV8vz8vqLasXr-_VvM5aIcSQNSgbdBK1khI8QNk0UjKlnOCQKy-ktpJzlTPg1gklnWsl196BY43zqMSU3B_vbmP_vcM0mFW_i9340nChcsHKoixGCo5UG_uUInqzjWFj494wMAdTZjRlDqbMydRYuTtWAiL-4aoUkAsufgF3-WOC</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Ramasubramanian, Bhaskar</creator><creator>Cleaveland, Rance</creator><creator>Marcus, Steven I.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2166-7838</orcidid><orcidid>https://orcid.org/0000-0002-4926-9567</orcidid><orcidid>https://orcid.org/0000-0002-4952-5380</orcidid></search><sort><creationdate>20200401</creationdate><title>Notions of Centralized and Decentralized Opacity in Linear Systems</title><author>Ramasubramanian, Bhaskar ; Cleaveland, Rance ; Marcus, Steven I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-be6bed6e98660f007bb66188d32048f369a62284102ad386ddc629fd0d1bdfe83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic><inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> epsilon - k</tex-math> </inline-formula>-ISO</topic><topic><inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> k</tex-math> </inline-formula>-ISO</topic><topic>Automata</topic><topic>Computers</topic><topic>Controllability</topic><topic>Cyber-physical systems</topic><topic>Discrete time systems</topic><topic>Discrete-event systems</topic><topic>Graph theory</topic><topic>Graphical representations</topic><topic>Linear systems</topic><topic>Nonlinear systems</topic><topic>nonsecret states</topic><topic>Observers</topic><topic>Opacity</topic><topic>output controllability</topic><topic>reachable sets</topic><topic>secret states</topic><topic>Time invariant systems</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramasubramanian, Bhaskar</creatorcontrib><creatorcontrib>Cleaveland, Rance</creatorcontrib><creatorcontrib>Marcus, Steven I.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ramasubramanian, Bhaskar</au><au>Cleaveland, Rance</au><au>Marcus, Steven I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Notions of Centralized and Decentralized Opacity in Linear Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>65</volume><issue>4</issue><spage>1442</spage><epage>1455</epage><pages>1442-1455</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract><![CDATA[We formulate notions of opacity for cyberphysical systems modeled as discrete-time linear time-invariant systems. A set of secret states is <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-ISO with respect to a set of nonsecret states if, starting from these sets at time 0, the outputs at time <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> are indistinguishable to an adversarial observer. Necessary and sufficient conditions to ensure that a secret specification is <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-ISO are established in terms of sets of reachable states. We also show how to adapt techniques for computing underapproximations and overapproximations of the set of reachable states of dynamical systems in order to soundly approximate <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-ISO. Furthermore, we provide a condition for output controllability, if <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-ISO holds, and show that the converse holds under an additional assumption. We extend the theory of opacity for single-adversary systems to the case of multiple adversaries and develop several notions of decentralized opacity. We study the following scenarios: first, the presence or lack of a centralized coordinator, and, second, the presence or absence of collusion among adversaries. In the case of colluding adversaries, we derive a condition for nonopacity that depends on the structure of the directed graph representing the communication between adversaries. Finally, we relax the condition that the outputs be indistinguishable and define a notion of <inline-formula><tex-math notation="LaTeX">\epsilon</tex-math></inline-formula>-opacity, and also provide an extension to the case of nonlinear systems.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2019.2920837</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2166-7838</orcidid><orcidid>https://orcid.org/0000-0002-4926-9567</orcidid><orcidid>https://orcid.org/0000-0002-4952-5380</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2020-04, Vol.65 (4), p.1442-1455 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAC_2019_2920837 |
source | IEEE Electronic Library (IEL) |
subjects | <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> epsilon - k</tex-math> </inline-formula>-ISO <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> k</tex-math> </inline-formula>-ISO Automata Computers Controllability Cyber-physical systems Discrete time systems Discrete-event systems Graph theory Graphical representations Linear systems Nonlinear systems nonsecret states Observers Opacity output controllability reachable sets secret states Time invariant systems Trajectory |
title | Notions of Centralized and Decentralized Opacity in Linear Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A58%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Notions%20of%20Centralized%20and%20Decentralized%20Opacity%20in%20Linear%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Ramasubramanian,%20Bhaskar&rft.date=2020-04-01&rft.volume=65&rft.issue=4&rft.spage=1442&rft.epage=1455&rft.pages=1442-1455&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2019.2920837&rft_dat=%3Cproquest_RIE%3E2384317575%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384317575&rft_id=info:pmid/&rft_ieee_id=8730432&rfr_iscdi=true |