Notions of Centralized and Decentralized Opacity in Linear Systems

We formulate notions of opacity for cyberphysical systems modeled as discrete-time linear time-invariant systems. A set of secret states is k-ISO with respect to a set of nonsecret states if, starting from these sets at time 0, the outputs at time k are indistinguishable to an adversarial observer....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2020-04, Vol.65 (4), p.1442-1455
Hauptverfasser: Ramasubramanian, Bhaskar, Cleaveland, Rance, Marcus, Steven I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1455
container_issue 4
container_start_page 1442
container_title IEEE transactions on automatic control
container_volume 65
creator Ramasubramanian, Bhaskar
Cleaveland, Rance
Marcus, Steven I.
description We formulate notions of opacity for cyberphysical systems modeled as discrete-time linear time-invariant systems. A set of secret states is k-ISO with respect to a set of nonsecret states if, starting from these sets at time 0, the outputs at time k are indistinguishable to an adversarial observer. Necessary and sufficient conditions to ensure that a secret specification is k-ISO are established in terms of sets of reachable states. We also show how to adapt techniques for computing underapproximations and overapproximations of the set of reachable states of dynamical systems in order to soundly approximate k-ISO. Furthermore, we provide a condition for output controllability, if k-ISO holds, and show that the converse holds under an additional assumption. We extend the theory of opacity for single-adversary systems to the case of multiple adversaries and develop several notions of decentralized opacity. We study the following scenarios: first, the presence or lack of a centralized coordinator, and, second, the presence or absence of collusion among adversaries. In the case of colluding adversaries, we derive a condition for nonopacity that depends on the structure of the directed graph representing the communication between adversaries. Finally, we relax the condition that the outputs be indistinguishable and define a notion of \epsilon-opacity, and also provide an extension to the case of nonlinear systems.
doi_str_mv 10.1109/TAC.2019.2920837
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2019_2920837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8730432</ieee_id><sourcerecordid>2384317575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-be6bed6e98660f007bb66188d32048f369a62284102ad386ddc629fd0d1bdfe83</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3wUvA89ZJsptNjnX9hMUerOeQ3Uwgpd2tyfZQf71bWsTT8A7POwMPIbcMZoyBfljOqxkHpmdcc1CiPCMTVhQq4wUX52QCwFSmuZKX5Cql1RhlnrMJefzoh9B3ifaeVtgN0a7DDzpqO0efsP23WWxtG4Y9DR2tQ4c20s99GnCTrsmFt-uEN6c5JV8vz8vqLasXr-_VvM5aIcSQNSgbdBK1khI8QNk0UjKlnOCQKy-ktpJzlTPg1gklnWsl196BY43zqMSU3B_vbmP_vcM0mFW_i9340nChcsHKoixGCo5UG_uUInqzjWFj494wMAdTZjRlDqbMydRYuTtWAiL-4aoUkAsufgF3-WOC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384317575</pqid></control><display><type>article</type><title>Notions of Centralized and Decentralized Opacity in Linear Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Ramasubramanian, Bhaskar ; Cleaveland, Rance ; Marcus, Steven I.</creator><creatorcontrib>Ramasubramanian, Bhaskar ; Cleaveland, Rance ; Marcus, Steven I.</creatorcontrib><description><![CDATA[We formulate notions of opacity for cyberphysical systems modeled as discrete-time linear time-invariant systems. A set of secret states is <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-ISO with respect to a set of nonsecret states if, starting from these sets at time 0, the outputs at time <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> are indistinguishable to an adversarial observer. Necessary and sufficient conditions to ensure that a secret specification is <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-ISO are established in terms of sets of reachable states. We also show how to adapt techniques for computing underapproximations and overapproximations of the set of reachable states of dynamical systems in order to soundly approximate <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-ISO. Furthermore, we provide a condition for output controllability, if <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-ISO holds, and show that the converse holds under an additional assumption. We extend the theory of opacity for single-adversary systems to the case of multiple adversaries and develop several notions of decentralized opacity. We study the following scenarios: first, the presence or lack of a centralized coordinator, and, second, the presence or absence of collusion among adversaries. In the case of colluding adversaries, we derive a condition for nonopacity that depends on the structure of the directed graph representing the communication between adversaries. Finally, we relax the condition that the outputs be indistinguishable and define a notion of <inline-formula><tex-math notation="LaTeX">\epsilon</tex-math></inline-formula>-opacity, and also provide an extension to the case of nonlinear systems.]]></description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2019.2920837</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><![CDATA[<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> epsilon - k</tex-math> </inline-formula>-ISO ; <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> k</tex-math> </inline-formula>-ISO ; Automata ; Computers ; Controllability ; Cyber-physical systems ; Discrete time systems ; Discrete-event systems ; Graph theory ; Graphical representations ; Linear systems ; Nonlinear systems ; nonsecret states ; Observers ; Opacity ; output controllability ; reachable sets ; secret states ; Time invariant systems ; Trajectory]]></subject><ispartof>IEEE transactions on automatic control, 2020-04, Vol.65 (4), p.1442-1455</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-be6bed6e98660f007bb66188d32048f369a62284102ad386ddc629fd0d1bdfe83</citedby><cites>FETCH-LOGICAL-c333t-be6bed6e98660f007bb66188d32048f369a62284102ad386ddc629fd0d1bdfe83</cites><orcidid>0000-0002-2166-7838 ; 0000-0002-4926-9567 ; 0000-0002-4952-5380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8730432$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8730432$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ramasubramanian, Bhaskar</creatorcontrib><creatorcontrib>Cleaveland, Rance</creatorcontrib><creatorcontrib>Marcus, Steven I.</creatorcontrib><title>Notions of Centralized and Decentralized Opacity in Linear Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description><![CDATA[We formulate notions of opacity for cyberphysical systems modeled as discrete-time linear time-invariant systems. A set of secret states is <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-ISO with respect to a set of nonsecret states if, starting from these sets at time 0, the outputs at time <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> are indistinguishable to an adversarial observer. Necessary and sufficient conditions to ensure that a secret specification is <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-ISO are established in terms of sets of reachable states. We also show how to adapt techniques for computing underapproximations and overapproximations of the set of reachable states of dynamical systems in order to soundly approximate <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-ISO. Furthermore, we provide a condition for output controllability, if <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-ISO holds, and show that the converse holds under an additional assumption. We extend the theory of opacity for single-adversary systems to the case of multiple adversaries and develop several notions of decentralized opacity. We study the following scenarios: first, the presence or lack of a centralized coordinator, and, second, the presence or absence of collusion among adversaries. In the case of colluding adversaries, we derive a condition for nonopacity that depends on the structure of the directed graph representing the communication between adversaries. Finally, we relax the condition that the outputs be indistinguishable and define a notion of <inline-formula><tex-math notation="LaTeX">\epsilon</tex-math></inline-formula>-opacity, and also provide an extension to the case of nonlinear systems.]]></description><subject>&lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; epsilon - k&lt;/tex-math&gt; &lt;/inline-formula&gt;-ISO</subject><subject>&lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; k&lt;/tex-math&gt; &lt;/inline-formula&gt;-ISO</subject><subject>Automata</subject><subject>Computers</subject><subject>Controllability</subject><subject>Cyber-physical systems</subject><subject>Discrete time systems</subject><subject>Discrete-event systems</subject><subject>Graph theory</subject><subject>Graphical representations</subject><subject>Linear systems</subject><subject>Nonlinear systems</subject><subject>nonsecret states</subject><subject>Observers</subject><subject>Opacity</subject><subject>output controllability</subject><subject>reachable sets</subject><subject>secret states</subject><subject>Time invariant systems</subject><subject>Trajectory</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKt3wUvA89ZJsptNjnX9hMUerOeQ3Uwgpd2tyfZQf71bWsTT8A7POwMPIbcMZoyBfljOqxkHpmdcc1CiPCMTVhQq4wUX52QCwFSmuZKX5Cql1RhlnrMJefzoh9B3ifaeVtgN0a7DDzpqO0efsP23WWxtG4Y9DR2tQ4c20s99GnCTrsmFt-uEN6c5JV8vz8vqLasXr-_VvM5aIcSQNSgbdBK1khI8QNk0UjKlnOCQKy-ktpJzlTPg1gklnWsl196BY43zqMSU3B_vbmP_vcM0mFW_i9340nChcsHKoixGCo5UG_uUInqzjWFj494wMAdTZjRlDqbMydRYuTtWAiL-4aoUkAsufgF3-WOC</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Ramasubramanian, Bhaskar</creator><creator>Cleaveland, Rance</creator><creator>Marcus, Steven I.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2166-7838</orcidid><orcidid>https://orcid.org/0000-0002-4926-9567</orcidid><orcidid>https://orcid.org/0000-0002-4952-5380</orcidid></search><sort><creationdate>20200401</creationdate><title>Notions of Centralized and Decentralized Opacity in Linear Systems</title><author>Ramasubramanian, Bhaskar ; Cleaveland, Rance ; Marcus, Steven I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-be6bed6e98660f007bb66188d32048f369a62284102ad386ddc629fd0d1bdfe83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>&lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; epsilon - k&lt;/tex-math&gt; &lt;/inline-formula&gt;-ISO</topic><topic>&lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; k&lt;/tex-math&gt; &lt;/inline-formula&gt;-ISO</topic><topic>Automata</topic><topic>Computers</topic><topic>Controllability</topic><topic>Cyber-physical systems</topic><topic>Discrete time systems</topic><topic>Discrete-event systems</topic><topic>Graph theory</topic><topic>Graphical representations</topic><topic>Linear systems</topic><topic>Nonlinear systems</topic><topic>nonsecret states</topic><topic>Observers</topic><topic>Opacity</topic><topic>output controllability</topic><topic>reachable sets</topic><topic>secret states</topic><topic>Time invariant systems</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramasubramanian, Bhaskar</creatorcontrib><creatorcontrib>Cleaveland, Rance</creatorcontrib><creatorcontrib>Marcus, Steven I.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ramasubramanian, Bhaskar</au><au>Cleaveland, Rance</au><au>Marcus, Steven I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Notions of Centralized and Decentralized Opacity in Linear Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>65</volume><issue>4</issue><spage>1442</spage><epage>1455</epage><pages>1442-1455</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract><![CDATA[We formulate notions of opacity for cyberphysical systems modeled as discrete-time linear time-invariant systems. A set of secret states is <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-ISO with respect to a set of nonsecret states if, starting from these sets at time 0, the outputs at time <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> are indistinguishable to an adversarial observer. Necessary and sufficient conditions to ensure that a secret specification is <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-ISO are established in terms of sets of reachable states. We also show how to adapt techniques for computing underapproximations and overapproximations of the set of reachable states of dynamical systems in order to soundly approximate <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-ISO. Furthermore, we provide a condition for output controllability, if <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-ISO holds, and show that the converse holds under an additional assumption. We extend the theory of opacity for single-adversary systems to the case of multiple adversaries and develop several notions of decentralized opacity. We study the following scenarios: first, the presence or lack of a centralized coordinator, and, second, the presence or absence of collusion among adversaries. In the case of colluding adversaries, we derive a condition for nonopacity that depends on the structure of the directed graph representing the communication between adversaries. Finally, we relax the condition that the outputs be indistinguishable and define a notion of <inline-formula><tex-math notation="LaTeX">\epsilon</tex-math></inline-formula>-opacity, and also provide an extension to the case of nonlinear systems.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2019.2920837</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2166-7838</orcidid><orcidid>https://orcid.org/0000-0002-4926-9567</orcidid><orcidid>https://orcid.org/0000-0002-4952-5380</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2020-04, Vol.65 (4), p.1442-1455
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_2019_2920837
source IEEE Electronic Library (IEL)
subjects <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> epsilon - k</tex-math> </inline-formula>-ISO
<inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> k</tex-math> </inline-formula>-ISO
Automata
Computers
Controllability
Cyber-physical systems
Discrete time systems
Discrete-event systems
Graph theory
Graphical representations
Linear systems
Nonlinear systems
nonsecret states
Observers
Opacity
output controllability
reachable sets
secret states
Time invariant systems
Trajectory
title Notions of Centralized and Decentralized Opacity in Linear Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A58%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Notions%20of%20Centralized%20and%20Decentralized%20Opacity%20in%20Linear%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Ramasubramanian,%20Bhaskar&rft.date=2020-04-01&rft.volume=65&rft.issue=4&rft.spage=1442&rft.epage=1455&rft.pages=1442-1455&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2019.2920837&rft_dat=%3Cproquest_RIE%3E2384317575%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384317575&rft_id=info:pmid/&rft_ieee_id=8730432&rfr_iscdi=true