A Graphical Characterization of Structurally Controllable Linear Systems With Dependent Parameters

One version of the concept of structural controllability defined for single-input systems by Lin and subsequently generalized to multi-input systems by others, states that a parameterized matrix pair (A, B) whose nonzero entries are distinct parameters, is structurally controllable if values can be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2019-11, Vol.64 (11), p.4484-4495
Hauptverfasser: Liu, Fengjiao, Morse, A. Stephen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One version of the concept of structural controllability defined for single-input systems by Lin and subsequently generalized to multi-input systems by others, states that a parameterized matrix pair (A, B) whose nonzero entries are distinct parameters, is structurally controllable if values can be assigned to the parameters that cause the resulting matrix pair to be controllable. In this paper, the concept of structural controllability is broadened to allow for the possibility that a parameter may appear in more than one location in the pair (A, B). Subject to a certain condition on the parameterization called the "binary assumption," an explicit graph-theoretic characterization of such matrix pairs is derived.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2019.2908311