Topology Reconstruction of Dynamical Networks via Constrained Lyapunov Equations

The network structure (or topology) of a dynamical network is often unavailable or uncertain. Hence, we consider the problem of network reconstruction. Network reconstruction aims at inferring the topology of a dynamical network using measurements obtained from the network. In this technical note we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2019-10, Vol.64 (10), p.4300-4306
Hauptverfasser: van Waarde, Henk J., Tesi, Pietro, Camlibel, M. Kanat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4306
container_issue 10
container_start_page 4300
container_title IEEE transactions on automatic control
container_volume 64
creator van Waarde, Henk J.
Tesi, Pietro
Camlibel, M. Kanat
description The network structure (or topology) of a dynamical network is often unavailable or uncertain. Hence, we consider the problem of network reconstruction. Network reconstruction aims at inferring the topology of a dynamical network using measurements obtained from the network. In this technical note we define the notion of solvability of the network reconstruction problem. Subsequently, we provide necessary and sufficient conditions under which the network reconstruction problem is solvable. Finally, using constrained Lyapunov equations, we establish novel network reconstruction algorithms, applicable to general dynamical networks. We also provide specialized algorithms for specific network dynamics, such as the well known consensus and adjacency dynamics.
doi_str_mv 10.1109/TAC.2019.2894585
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2019_2894585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8621032</ieee_id><sourcerecordid>2298711501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-874b29a5d8d9c46dc7426301b132b7579512bb0ffef8fbc7e47afc151da87a3e3</originalsourceid><addsrcrecordid>eNo9kM9LwzAUgIMoOKd3wUvAc2de0jTpcdSfMFRknkOaJtK5NV3STvrf27nh6fHg-96DD6FrIDMAkt8t58WMEshnVOYpl_wETYBzmVBO2SmaEAIyyanMztFFjKtxzdIUJuh96Vu_9l8D_rDGN7ELvelq32Dv8P3Q6E1t9Bq_2u7Hh--Id7XGxR-m68ZWeDHotm_8Dj9se7334iU6c3od7dVxTtHn48OyeE4Wb08vxXyRGMZYl0iRljTXvJJVbtKsMiKlGSNQAqOl4CLnQMuSOGeddKURNhXaGeBQaSk0s2yKbg932-C3vY2dWvk-NONLRWkuBQAnMFLkQJngYwzWqTbUGx0GBUTtu6mxm9p3U8duo3JzUGpr7T8uMwqEUfYLbPRqHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298711501</pqid></control><display><type>article</type><title>Topology Reconstruction of Dynamical Networks via Constrained Lyapunov Equations</title><source>IEEE Electronic Library (IEL)</source><creator>van Waarde, Henk J. ; Tesi, Pietro ; Camlibel, M. Kanat</creator><creatorcontrib>van Waarde, Henk J. ; Tesi, Pietro ; Camlibel, M. Kanat</creatorcontrib><description>The network structure (or topology) of a dynamical network is often unavailable or uncertain. Hence, we consider the problem of network reconstruction. Network reconstruction aims at inferring the topology of a dynamical network using measurements obtained from the network. In this technical note we define the notion of solvability of the network reconstruction problem. Subsequently, we provide necessary and sufficient conditions under which the network reconstruction problem is solvable. Finally, using constrained Lyapunov equations, we establish novel network reconstruction algorithms, applicable to general dynamical networks. We also provide specialized algorithms for specific network dynamics, such as the well known consensus and adjacency dynamics.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2019.2894585</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Dynamical networks ; Heuristic algorithms ; Laplace equations ; Lyapunov equations ; Mathematical analysis ; network reconstruction ; Network topology ; Nickel ; Reconstruction ; Reconstruction algorithms ; Topology ; topology identification ; Trajectory</subject><ispartof>IEEE transactions on automatic control, 2019-10, Vol.64 (10), p.4300-4306</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-874b29a5d8d9c46dc7426301b132b7579512bb0ffef8fbc7e47afc151da87a3e3</citedby><cites>FETCH-LOGICAL-c333t-874b29a5d8d9c46dc7426301b132b7579512bb0ffef8fbc7e47afc151da87a3e3</cites><orcidid>0000-0001-5711-6299 ; 0000-0002-2561-2682 ; 0000-0002-2407-8166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8621032$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8621032$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>van Waarde, Henk J.</creatorcontrib><creatorcontrib>Tesi, Pietro</creatorcontrib><creatorcontrib>Camlibel, M. Kanat</creatorcontrib><title>Topology Reconstruction of Dynamical Networks via Constrained Lyapunov Equations</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>The network structure (or topology) of a dynamical network is often unavailable or uncertain. Hence, we consider the problem of network reconstruction. Network reconstruction aims at inferring the topology of a dynamical network using measurements obtained from the network. In this technical note we define the notion of solvability of the network reconstruction problem. Subsequently, we provide necessary and sufficient conditions under which the network reconstruction problem is solvable. Finally, using constrained Lyapunov equations, we establish novel network reconstruction algorithms, applicable to general dynamical networks. We also provide specialized algorithms for specific network dynamics, such as the well known consensus and adjacency dynamics.</description><subject>Algorithms</subject><subject>Dynamical networks</subject><subject>Heuristic algorithms</subject><subject>Laplace equations</subject><subject>Lyapunov equations</subject><subject>Mathematical analysis</subject><subject>network reconstruction</subject><subject>Network topology</subject><subject>Nickel</subject><subject>Reconstruction</subject><subject>Reconstruction algorithms</subject><subject>Topology</subject><subject>topology identification</subject><subject>Trajectory</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAUgIMoOKd3wUvAc2de0jTpcdSfMFRknkOaJtK5NV3STvrf27nh6fHg-96DD6FrIDMAkt8t58WMEshnVOYpl_wETYBzmVBO2SmaEAIyyanMztFFjKtxzdIUJuh96Vu_9l8D_rDGN7ELvelq32Dv8P3Q6E1t9Bq_2u7Hh--Id7XGxR-m68ZWeDHotm_8Dj9se7334iU6c3od7dVxTtHn48OyeE4Wb08vxXyRGMZYl0iRljTXvJJVbtKsMiKlGSNQAqOl4CLnQMuSOGeddKURNhXaGeBQaSk0s2yKbg932-C3vY2dWvk-NONLRWkuBQAnMFLkQJngYwzWqTbUGx0GBUTtu6mxm9p3U8duo3JzUGpr7T8uMwqEUfYLbPRqHg</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>van Waarde, Henk J.</creator><creator>Tesi, Pietro</creator><creator>Camlibel, M. Kanat</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5711-6299</orcidid><orcidid>https://orcid.org/0000-0002-2561-2682</orcidid><orcidid>https://orcid.org/0000-0002-2407-8166</orcidid></search><sort><creationdate>20191001</creationdate><title>Topology Reconstruction of Dynamical Networks via Constrained Lyapunov Equations</title><author>van Waarde, Henk J. ; Tesi, Pietro ; Camlibel, M. Kanat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-874b29a5d8d9c46dc7426301b132b7579512bb0ffef8fbc7e47afc151da87a3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Dynamical networks</topic><topic>Heuristic algorithms</topic><topic>Laplace equations</topic><topic>Lyapunov equations</topic><topic>Mathematical analysis</topic><topic>network reconstruction</topic><topic>Network topology</topic><topic>Nickel</topic><topic>Reconstruction</topic><topic>Reconstruction algorithms</topic><topic>Topology</topic><topic>topology identification</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Waarde, Henk J.</creatorcontrib><creatorcontrib>Tesi, Pietro</creatorcontrib><creatorcontrib>Camlibel, M. Kanat</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>van Waarde, Henk J.</au><au>Tesi, Pietro</au><au>Camlibel, M. Kanat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topology Reconstruction of Dynamical Networks via Constrained Lyapunov Equations</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>64</volume><issue>10</issue><spage>4300</spage><epage>4306</epage><pages>4300-4306</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>The network structure (or topology) of a dynamical network is often unavailable or uncertain. Hence, we consider the problem of network reconstruction. Network reconstruction aims at inferring the topology of a dynamical network using measurements obtained from the network. In this technical note we define the notion of solvability of the network reconstruction problem. Subsequently, we provide necessary and sufficient conditions under which the network reconstruction problem is solvable. Finally, using constrained Lyapunov equations, we establish novel network reconstruction algorithms, applicable to general dynamical networks. We also provide specialized algorithms for specific network dynamics, such as the well known consensus and adjacency dynamics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2019.2894585</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5711-6299</orcidid><orcidid>https://orcid.org/0000-0002-2561-2682</orcidid><orcidid>https://orcid.org/0000-0002-2407-8166</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2019-10, Vol.64 (10), p.4300-4306
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_2019_2894585
source IEEE Electronic Library (IEL)
subjects Algorithms
Dynamical networks
Heuristic algorithms
Laplace equations
Lyapunov equations
Mathematical analysis
network reconstruction
Network topology
Nickel
Reconstruction
Reconstruction algorithms
Topology
topology identification
Trajectory
title Topology Reconstruction of Dynamical Networks via Constrained Lyapunov Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A38%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topology%20Reconstruction%20of%20Dynamical%20Networks%20via%20Constrained%20Lyapunov%20Equations&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=van%20Waarde,%20Henk%20J.&rft.date=2019-10-01&rft.volume=64&rft.issue=10&rft.spage=4300&rft.epage=4306&rft.pages=4300-4306&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2019.2894585&rft_dat=%3Cproquest_RIE%3E2298711501%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2298711501&rft_id=info:pmid/&rft_ieee_id=8621032&rfr_iscdi=true