Topology Reconstruction of Dynamical Networks via Constrained Lyapunov Equations
The network structure (or topology) of a dynamical network is often unavailable or uncertain. Hence, we consider the problem of network reconstruction. Network reconstruction aims at inferring the topology of a dynamical network using measurements obtained from the network. In this technical note we...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2019-10, Vol.64 (10), p.4300-4306 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4306 |
---|---|
container_issue | 10 |
container_start_page | 4300 |
container_title | IEEE transactions on automatic control |
container_volume | 64 |
creator | van Waarde, Henk J. Tesi, Pietro Camlibel, M. Kanat |
description | The network structure (or topology) of a dynamical network is often unavailable or uncertain. Hence, we consider the problem of network reconstruction. Network reconstruction aims at inferring the topology of a dynamical network using measurements obtained from the network. In this technical note we define the notion of solvability of the network reconstruction problem. Subsequently, we provide necessary and sufficient conditions under which the network reconstruction problem is solvable. Finally, using constrained Lyapunov equations, we establish novel network reconstruction algorithms, applicable to general dynamical networks. We also provide specialized algorithms for specific network dynamics, such as the well known consensus and adjacency dynamics. |
doi_str_mv | 10.1109/TAC.2019.2894585 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2019_2894585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8621032</ieee_id><sourcerecordid>2298711501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-874b29a5d8d9c46dc7426301b132b7579512bb0ffef8fbc7e47afc151da87a3e3</originalsourceid><addsrcrecordid>eNo9kM9LwzAUgIMoOKd3wUvAc2de0jTpcdSfMFRknkOaJtK5NV3STvrf27nh6fHg-96DD6FrIDMAkt8t58WMEshnVOYpl_wETYBzmVBO2SmaEAIyyanMztFFjKtxzdIUJuh96Vu_9l8D_rDGN7ELvelq32Dv8P3Q6E1t9Bq_2u7Hh--Id7XGxR-m68ZWeDHotm_8Dj9se7334iU6c3od7dVxTtHn48OyeE4Wb08vxXyRGMZYl0iRljTXvJJVbtKsMiKlGSNQAqOl4CLnQMuSOGeddKURNhXaGeBQaSk0s2yKbg932-C3vY2dWvk-NONLRWkuBQAnMFLkQJngYwzWqTbUGx0GBUTtu6mxm9p3U8duo3JzUGpr7T8uMwqEUfYLbPRqHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298711501</pqid></control><display><type>article</type><title>Topology Reconstruction of Dynamical Networks via Constrained Lyapunov Equations</title><source>IEEE Electronic Library (IEL)</source><creator>van Waarde, Henk J. ; Tesi, Pietro ; Camlibel, M. Kanat</creator><creatorcontrib>van Waarde, Henk J. ; Tesi, Pietro ; Camlibel, M. Kanat</creatorcontrib><description>The network structure (or topology) of a dynamical network is often unavailable or uncertain. Hence, we consider the problem of network reconstruction. Network reconstruction aims at inferring the topology of a dynamical network using measurements obtained from the network. In this technical note we define the notion of solvability of the network reconstruction problem. Subsequently, we provide necessary and sufficient conditions under which the network reconstruction problem is solvable. Finally, using constrained Lyapunov equations, we establish novel network reconstruction algorithms, applicable to general dynamical networks. We also provide specialized algorithms for specific network dynamics, such as the well known consensus and adjacency dynamics.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2019.2894585</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Dynamical networks ; Heuristic algorithms ; Laplace equations ; Lyapunov equations ; Mathematical analysis ; network reconstruction ; Network topology ; Nickel ; Reconstruction ; Reconstruction algorithms ; Topology ; topology identification ; Trajectory</subject><ispartof>IEEE transactions on automatic control, 2019-10, Vol.64 (10), p.4300-4306</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-874b29a5d8d9c46dc7426301b132b7579512bb0ffef8fbc7e47afc151da87a3e3</citedby><cites>FETCH-LOGICAL-c333t-874b29a5d8d9c46dc7426301b132b7579512bb0ffef8fbc7e47afc151da87a3e3</cites><orcidid>0000-0001-5711-6299 ; 0000-0002-2561-2682 ; 0000-0002-2407-8166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8621032$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8621032$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>van Waarde, Henk J.</creatorcontrib><creatorcontrib>Tesi, Pietro</creatorcontrib><creatorcontrib>Camlibel, M. Kanat</creatorcontrib><title>Topology Reconstruction of Dynamical Networks via Constrained Lyapunov Equations</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>The network structure (or topology) of a dynamical network is often unavailable or uncertain. Hence, we consider the problem of network reconstruction. Network reconstruction aims at inferring the topology of a dynamical network using measurements obtained from the network. In this technical note we define the notion of solvability of the network reconstruction problem. Subsequently, we provide necessary and sufficient conditions under which the network reconstruction problem is solvable. Finally, using constrained Lyapunov equations, we establish novel network reconstruction algorithms, applicable to general dynamical networks. We also provide specialized algorithms for specific network dynamics, such as the well known consensus and adjacency dynamics.</description><subject>Algorithms</subject><subject>Dynamical networks</subject><subject>Heuristic algorithms</subject><subject>Laplace equations</subject><subject>Lyapunov equations</subject><subject>Mathematical analysis</subject><subject>network reconstruction</subject><subject>Network topology</subject><subject>Nickel</subject><subject>Reconstruction</subject><subject>Reconstruction algorithms</subject><subject>Topology</subject><subject>topology identification</subject><subject>Trajectory</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAUgIMoOKd3wUvAc2de0jTpcdSfMFRknkOaJtK5NV3STvrf27nh6fHg-96DD6FrIDMAkt8t58WMEshnVOYpl_wETYBzmVBO2SmaEAIyyanMztFFjKtxzdIUJuh96Vu_9l8D_rDGN7ELvelq32Dv8P3Q6E1t9Bq_2u7Hh--Id7XGxR-m68ZWeDHotm_8Dj9se7334iU6c3od7dVxTtHn48OyeE4Wb08vxXyRGMZYl0iRljTXvJJVbtKsMiKlGSNQAqOl4CLnQMuSOGeddKURNhXaGeBQaSk0s2yKbg932-C3vY2dWvk-NONLRWkuBQAnMFLkQJngYwzWqTbUGx0GBUTtu6mxm9p3U8duo3JzUGpr7T8uMwqEUfYLbPRqHg</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>van Waarde, Henk J.</creator><creator>Tesi, Pietro</creator><creator>Camlibel, M. Kanat</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5711-6299</orcidid><orcidid>https://orcid.org/0000-0002-2561-2682</orcidid><orcidid>https://orcid.org/0000-0002-2407-8166</orcidid></search><sort><creationdate>20191001</creationdate><title>Topology Reconstruction of Dynamical Networks via Constrained Lyapunov Equations</title><author>van Waarde, Henk J. ; Tesi, Pietro ; Camlibel, M. Kanat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-874b29a5d8d9c46dc7426301b132b7579512bb0ffef8fbc7e47afc151da87a3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Dynamical networks</topic><topic>Heuristic algorithms</topic><topic>Laplace equations</topic><topic>Lyapunov equations</topic><topic>Mathematical analysis</topic><topic>network reconstruction</topic><topic>Network topology</topic><topic>Nickel</topic><topic>Reconstruction</topic><topic>Reconstruction algorithms</topic><topic>Topology</topic><topic>topology identification</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Waarde, Henk J.</creatorcontrib><creatorcontrib>Tesi, Pietro</creatorcontrib><creatorcontrib>Camlibel, M. Kanat</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>van Waarde, Henk J.</au><au>Tesi, Pietro</au><au>Camlibel, M. Kanat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topology Reconstruction of Dynamical Networks via Constrained Lyapunov Equations</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>64</volume><issue>10</issue><spage>4300</spage><epage>4306</epage><pages>4300-4306</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>The network structure (or topology) of a dynamical network is often unavailable or uncertain. Hence, we consider the problem of network reconstruction. Network reconstruction aims at inferring the topology of a dynamical network using measurements obtained from the network. In this technical note we define the notion of solvability of the network reconstruction problem. Subsequently, we provide necessary and sufficient conditions under which the network reconstruction problem is solvable. Finally, using constrained Lyapunov equations, we establish novel network reconstruction algorithms, applicable to general dynamical networks. We also provide specialized algorithms for specific network dynamics, such as the well known consensus and adjacency dynamics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2019.2894585</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5711-6299</orcidid><orcidid>https://orcid.org/0000-0002-2561-2682</orcidid><orcidid>https://orcid.org/0000-0002-2407-8166</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2019-10, Vol.64 (10), p.4300-4306 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAC_2019_2894585 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Dynamical networks Heuristic algorithms Laplace equations Lyapunov equations Mathematical analysis network reconstruction Network topology Nickel Reconstruction Reconstruction algorithms Topology topology identification Trajectory |
title | Topology Reconstruction of Dynamical Networks via Constrained Lyapunov Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A38%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topology%20Reconstruction%20of%20Dynamical%20Networks%20via%20Constrained%20Lyapunov%20Equations&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=van%20Waarde,%20Henk%20J.&rft.date=2019-10-01&rft.volume=64&rft.issue=10&rft.spage=4300&rft.epage=4306&rft.pages=4300-4306&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2019.2894585&rft_dat=%3Cproquest_RIE%3E2298711501%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2298711501&rft_id=info:pmid/&rft_ieee_id=8621032&rfr_iscdi=true |