Computing the Projected Reachable Set of Stochastic Biochemical Reaction Networks Modeled by Switched Affine Systems

A fundamental question in systems biology is what combinations of mean and variance of the species present in a stochastic biochemical reaction network are attainable by perturbing the system with an external signal. To address this question, we show that the moments evolution in any generic network...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2018-11, Vol.63 (11), p.3719-3734
Hauptverfasser: Parise, Francesca, Valcher, Maria Elena, Lygeros, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3734
container_issue 11
container_start_page 3719
container_title IEEE transactions on automatic control
container_volume 63
creator Parise, Francesca
Valcher, Maria Elena
Lygeros, John
description A fundamental question in systems biology is what combinations of mean and variance of the species present in a stochastic biochemical reaction network are attainable by perturbing the system with an external signal. To address this question, we show that the moments evolution in any generic network can be either approximated or, under suitable assumptions, computed exactly as the solution of a switched affine system. We then propose a new method to approximate the reachable set of such a switched affine system. A remarkable feature of our approach is that it allows one to easily compute projections of the reachable set for pairs of moments of interest, without requiring the computation of the full reachable set, which can be prohibitive for large networks. As a second contribution, we also show how to select the external signal in order to maximize the probability of reaching a target set. To illustrate the method, we study a renowned model of the controlled gene expression and we derive estimates of the reachable set, for the protein mean and variance, that are more accurate than those available in the literature and consistent with experimental data.
doi_str_mv 10.1109/TAC.2018.2798800
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2018_2798800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8270690</ieee_id><sourcerecordid>2126473784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-8521f9b98a784c6f8a6f591107966a22dfdf8ede339667c2f3c732a4422c4d83</originalsourceid><addsrcrecordid>eNo9kMlPAjEUxhujiYjeTbw08TzYZZb2iMQtwSXCvSmdVynOTHFaQvjvLUI8ve33vpf3IXRNyYhSIu_m48mIESpGrJJCEHKCBrQoRMYKxk_RgKRRJpkoz9FFCKtUlnlOByhOfLveRNd94bgE_NH7FZgINf4EbZZ60QCeQcTe4ln0qRGiM_jepRRaZ3Tzx0XnO_wGcev774BffQ1NUljs8GzrYiJrPLbWdUlqFyK04RKdWd0EuDrGIZo_Pswnz9n0_ellMp5mhnMeM1EwauVCCl2J3JRW6NIWMn1bybLUjNW2tgJq4DzVlWGWm4ozneeMmbwWfIhuD7Lr3v9sIES18pu-SxcVo6zMK550E0UOlOl9CD1Yte5dq_udokTtrVXJWrW3Vh2tTSs3hxUHAP-4YBUpJeG_yFF1Pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126473784</pqid></control><display><type>article</type><title>Computing the Projected Reachable Set of Stochastic Biochemical Reaction Networks Modeled by Switched Affine Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Parise, Francesca ; Valcher, Maria Elena ; Lygeros, John</creator><creatorcontrib>Parise, Francesca ; Valcher, Maria Elena ; Lygeros, John</creatorcontrib><description>A fundamental question in systems biology is what combinations of mean and variance of the species present in a stochastic biochemical reaction network are attainable by perturbing the system with an external signal. To address this question, we show that the moments evolution in any generic network can be either approximated or, under suitable assumptions, computed exactly as the solution of a switched affine system. We then propose a new method to approximate the reachable set of such a switched affine system. A remarkable feature of our approach is that it allows one to easily compute projections of the reachable set for pairs of moments of interest, without requiring the computation of the full reachable set, which can be prohibitive for large networks. As a second contribution, we also show how to select the external signal in order to maximize the probability of reaching a target set. To illustrate the method, we study a renowned model of the controlled gene expression and we derive estimates of the reachable set, for the protein mean and variance, that are more accurate than those available in the literature and consistent with experimental data.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2018.2798800</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Chemical master equation ; Evolution (biology) ; Gene expression ; gene regulatory network ; Proteins ; reachability ; Sociology ; Statistics ; stochastic process ; Stochastic processes ; switched systems ; Switches ; Switching theory ; systems biology ; Variance</subject><ispartof>IEEE transactions on automatic control, 2018-11, Vol.63 (11), p.3719-3734</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-8521f9b98a784c6f8a6f591107966a22dfdf8ede339667c2f3c732a4422c4d83</citedby><cites>FETCH-LOGICAL-c333t-8521f9b98a784c6f8a6f591107966a22dfdf8ede339667c2f3c732a4422c4d83</cites><orcidid>0000-0002-7595-3688 ; 0000-0003-0650-4392 ; 0000-0002-6159-1962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8270690$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8270690$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Parise, Francesca</creatorcontrib><creatorcontrib>Valcher, Maria Elena</creatorcontrib><creatorcontrib>Lygeros, John</creatorcontrib><title>Computing the Projected Reachable Set of Stochastic Biochemical Reaction Networks Modeled by Switched Affine Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>A fundamental question in systems biology is what combinations of mean and variance of the species present in a stochastic biochemical reaction network are attainable by perturbing the system with an external signal. To address this question, we show that the moments evolution in any generic network can be either approximated or, under suitable assumptions, computed exactly as the solution of a switched affine system. We then propose a new method to approximate the reachable set of such a switched affine system. A remarkable feature of our approach is that it allows one to easily compute projections of the reachable set for pairs of moments of interest, without requiring the computation of the full reachable set, which can be prohibitive for large networks. As a second contribution, we also show how to select the external signal in order to maximize the probability of reaching a target set. To illustrate the method, we study a renowned model of the controlled gene expression and we derive estimates of the reachable set, for the protein mean and variance, that are more accurate than those available in the literature and consistent with experimental data.</description><subject>Chemical master equation</subject><subject>Evolution (biology)</subject><subject>Gene expression</subject><subject>gene regulatory network</subject><subject>Proteins</subject><subject>reachability</subject><subject>Sociology</subject><subject>Statistics</subject><subject>stochastic process</subject><subject>Stochastic processes</subject><subject>switched systems</subject><subject>Switches</subject><subject>Switching theory</subject><subject>systems biology</subject><subject>Variance</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMlPAjEUxhujiYjeTbw08TzYZZb2iMQtwSXCvSmdVynOTHFaQvjvLUI8ve33vpf3IXRNyYhSIu_m48mIESpGrJJCEHKCBrQoRMYKxk_RgKRRJpkoz9FFCKtUlnlOByhOfLveRNd94bgE_NH7FZgINf4EbZZ60QCeQcTe4ln0qRGiM_jepRRaZ3Tzx0XnO_wGcev774BffQ1NUljs8GzrYiJrPLbWdUlqFyK04RKdWd0EuDrGIZo_Pswnz9n0_ellMp5mhnMeM1EwauVCCl2J3JRW6NIWMn1bybLUjNW2tgJq4DzVlWGWm4ozneeMmbwWfIhuD7Lr3v9sIES18pu-SxcVo6zMK550E0UOlOl9CD1Yte5dq_udokTtrVXJWrW3Vh2tTSs3hxUHAP-4YBUpJeG_yFF1Pw</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Parise, Francesca</creator><creator>Valcher, Maria Elena</creator><creator>Lygeros, John</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7595-3688</orcidid><orcidid>https://orcid.org/0000-0003-0650-4392</orcidid><orcidid>https://orcid.org/0000-0002-6159-1962</orcidid></search><sort><creationdate>20181101</creationdate><title>Computing the Projected Reachable Set of Stochastic Biochemical Reaction Networks Modeled by Switched Affine Systems</title><author>Parise, Francesca ; Valcher, Maria Elena ; Lygeros, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-8521f9b98a784c6f8a6f591107966a22dfdf8ede339667c2f3c732a4422c4d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemical master equation</topic><topic>Evolution (biology)</topic><topic>Gene expression</topic><topic>gene regulatory network</topic><topic>Proteins</topic><topic>reachability</topic><topic>Sociology</topic><topic>Statistics</topic><topic>stochastic process</topic><topic>Stochastic processes</topic><topic>switched systems</topic><topic>Switches</topic><topic>Switching theory</topic><topic>systems biology</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parise, Francesca</creatorcontrib><creatorcontrib>Valcher, Maria Elena</creatorcontrib><creatorcontrib>Lygeros, John</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Parise, Francesca</au><au>Valcher, Maria Elena</au><au>Lygeros, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing the Projected Reachable Set of Stochastic Biochemical Reaction Networks Modeled by Switched Affine Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>63</volume><issue>11</issue><spage>3719</spage><epage>3734</epage><pages>3719-3734</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>A fundamental question in systems biology is what combinations of mean and variance of the species present in a stochastic biochemical reaction network are attainable by perturbing the system with an external signal. To address this question, we show that the moments evolution in any generic network can be either approximated or, under suitable assumptions, computed exactly as the solution of a switched affine system. We then propose a new method to approximate the reachable set of such a switched affine system. A remarkable feature of our approach is that it allows one to easily compute projections of the reachable set for pairs of moments of interest, without requiring the computation of the full reachable set, which can be prohibitive for large networks. As a second contribution, we also show how to select the external signal in order to maximize the probability of reaching a target set. To illustrate the method, we study a renowned model of the controlled gene expression and we derive estimates of the reachable set, for the protein mean and variance, that are more accurate than those available in the literature and consistent with experimental data.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2018.2798800</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7595-3688</orcidid><orcidid>https://orcid.org/0000-0003-0650-4392</orcidid><orcidid>https://orcid.org/0000-0002-6159-1962</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2018-11, Vol.63 (11), p.3719-3734
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_2018_2798800
source IEEE Electronic Library (IEL)
subjects Chemical master equation
Evolution (biology)
Gene expression
gene regulatory network
Proteins
reachability
Sociology
Statistics
stochastic process
Stochastic processes
switched systems
Switches
Switching theory
systems biology
Variance
title Computing the Projected Reachable Set of Stochastic Biochemical Reaction Networks Modeled by Switched Affine Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A37%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20the%20Projected%20Reachable%20Set%20of%20Stochastic%20Biochemical%20Reaction%20Networks%20Modeled%20by%20Switched%20Affine%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Parise,%20Francesca&rft.date=2018-11-01&rft.volume=63&rft.issue=11&rft.spage=3719&rft.epage=3734&rft.pages=3719-3734&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2018.2798800&rft_dat=%3Cproquest_RIE%3E2126473784%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126473784&rft_id=info:pmid/&rft_ieee_id=8270690&rfr_iscdi=true