Distributed Constrained Optimization and Consensus in Uncertain Networks via Proximal Minimization

We provide a unifying framework for distributed convex optimization over time-varying networks, in the presence of constraints and uncertainty, features that are typically treated separately in the literature. We adopt a proximal minimization perspective and show that this set-up allows us to bypass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2018-05, Vol.63 (5), p.1372-1387
Hauptverfasser: Margellos, Kostas, Falsone, Alessandro, Garatti, Simone, Prandini, Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1387
container_issue 5
container_start_page 1372
container_title IEEE transactions on automatic control
container_volume 63
creator Margellos, Kostas
Falsone, Alessandro
Garatti, Simone
Prandini, Maria
description We provide a unifying framework for distributed convex optimization over time-varying networks, in the presence of constraints and uncertainty, features that are typically treated separately in the literature. We adopt a proximal minimization perspective and show that this set-up allows us to bypass the difficulties of existing algorithms while simplifying the underlying mathematical analysis. We develop an iterative algorithm and show the convergence of the resulting scheme to some optimizer of the centralized problem. To deal with the case where the agents' constraint sets are affected by a possibly common uncertainty vector, we follow a scenario-based methodology and offer probabilistic guarantees regarding the feasibility properties of the resulting solution. To this end, we provide a distributed implementation of the scenario approach, allowing agents to use a different set of uncertainty scenarios in their local optimization programs. The efficacy of our algorithm is demonstrated by means of a numerical example related to a regression problem subject to regularization.
doi_str_mv 10.1109/TAC.2017.2747505
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2017_2747505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8022966</ieee_id><sourcerecordid>10_1109_TAC_2017_2747505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-5dcb60404b394117cb39b05c7f7531e156dd877aac05b4a252329a81769f84bc3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqWwR2LjH0jxOH4kyypAQSqURbuObMeRDK1T2S6vr8dVq65mrube0cxB6BbIBIDU98tpM6EE5IRKJjnhZ2gEnFcF5bQ8RyNCoCpqWolLdBXjR5aCMRgh_eBiCk7vku1wM_gslPO5X2yT27g_ldzgsfKHofVxF7HzeOWNDSk78ZtN30P4jPjLKfwehh-3UWv86vwpfY0uerWO9uZYx2j19Lhsnov5YvbSTOeFKSWkgndGC8II02XNAKTJVRNuZC95CRa46LpKSqUM4Zqp_V-0VhVIUfcV06YcI3LYa8IQY7B9uw35mPDbAmn3jNrMqN0zao-McuTuEHHW2pO9IpTWQpT_FYxkPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Distributed Constrained Optimization and Consensus in Uncertain Networks via Proximal Minimization</title><source>IEEE Electronic Library (IEL)</source><creator>Margellos, Kostas ; Falsone, Alessandro ; Garatti, Simone ; Prandini, Maria</creator><creatorcontrib>Margellos, Kostas ; Falsone, Alessandro ; Garatti, Simone ; Prandini, Maria</creatorcontrib><description>We provide a unifying framework for distributed convex optimization over time-varying networks, in the presence of constraints and uncertainty, features that are typically treated separately in the literature. We adopt a proximal minimization perspective and show that this set-up allows us to bypass the difficulties of existing algorithms while simplifying the underlying mathematical analysis. We develop an iterative algorithm and show the convergence of the resulting scheme to some optimizer of the centralized problem. To deal with the case where the agents' constraint sets are affected by a possibly common uncertainty vector, we follow a scenario-based methodology and offer probabilistic guarantees regarding the feasibility properties of the resulting solution. To this end, we provide a distributed implementation of the scenario approach, allowing agents to use a different set of uncertainty scenarios in their local optimization programs. The efficacy of our algorithm is demonstrated by means of a numerical example related to a regression problem subject to regularization.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2017.2747505</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Consensus ; Convergence ; Distributed algorithms ; distributed optimization ; Linear programming ; Minimization ; Optimization ; proximal minimization ; scenario approach ; uncertain systems ; Uncertainty</subject><ispartof>IEEE transactions on automatic control, 2018-05, Vol.63 (5), p.1372-1387</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-5dcb60404b394117cb39b05c7f7531e156dd877aac05b4a252329a81769f84bc3</citedby><cites>FETCH-LOGICAL-c371t-5dcb60404b394117cb39b05c7f7531e156dd877aac05b4a252329a81769f84bc3</cites><orcidid>0000-0002-5451-6892 ; 0000-0001-8865-8568 ; 0000-0001-7443-4117 ; 0000-0002-2335-1490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8022966$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8022966$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Margellos, Kostas</creatorcontrib><creatorcontrib>Falsone, Alessandro</creatorcontrib><creatorcontrib>Garatti, Simone</creatorcontrib><creatorcontrib>Prandini, Maria</creatorcontrib><title>Distributed Constrained Optimization and Consensus in Uncertain Networks via Proximal Minimization</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We provide a unifying framework for distributed convex optimization over time-varying networks, in the presence of constraints and uncertainty, features that are typically treated separately in the literature. We adopt a proximal minimization perspective and show that this set-up allows us to bypass the difficulties of existing algorithms while simplifying the underlying mathematical analysis. We develop an iterative algorithm and show the convergence of the resulting scheme to some optimizer of the centralized problem. To deal with the case where the agents' constraint sets are affected by a possibly common uncertainty vector, we follow a scenario-based methodology and offer probabilistic guarantees regarding the feasibility properties of the resulting solution. To this end, we provide a distributed implementation of the scenario approach, allowing agents to use a different set of uncertainty scenarios in their local optimization programs. The efficacy of our algorithm is demonstrated by means of a numerical example related to a regression problem subject to regularization.</description><subject>Algorithm design and analysis</subject><subject>Consensus</subject><subject>Convergence</subject><subject>Distributed algorithms</subject><subject>distributed optimization</subject><subject>Linear programming</subject><subject>Minimization</subject><subject>Optimization</subject><subject>proximal minimization</subject><subject>scenario approach</subject><subject>uncertain systems</subject><subject>Uncertainty</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqWwR2LjH0jxOH4kyypAQSqURbuObMeRDK1T2S6vr8dVq65mrube0cxB6BbIBIDU98tpM6EE5IRKJjnhZ2gEnFcF5bQ8RyNCoCpqWolLdBXjR5aCMRgh_eBiCk7vku1wM_gslPO5X2yT27g_ldzgsfKHofVxF7HzeOWNDSk78ZtN30P4jPjLKfwehh-3UWv86vwpfY0uerWO9uZYx2j19Lhsnov5YvbSTOeFKSWkgndGC8II02XNAKTJVRNuZC95CRa46LpKSqUM4Zqp_V-0VhVIUfcV06YcI3LYa8IQY7B9uw35mPDbAmn3jNrMqN0zao-McuTuEHHW2pO9IpTWQpT_FYxkPw</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Margellos, Kostas</creator><creator>Falsone, Alessandro</creator><creator>Garatti, Simone</creator><creator>Prandini, Maria</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5451-6892</orcidid><orcidid>https://orcid.org/0000-0001-8865-8568</orcidid><orcidid>https://orcid.org/0000-0001-7443-4117</orcidid><orcidid>https://orcid.org/0000-0002-2335-1490</orcidid></search><sort><creationdate>201805</creationdate><title>Distributed Constrained Optimization and Consensus in Uncertain Networks via Proximal Minimization</title><author>Margellos, Kostas ; Falsone, Alessandro ; Garatti, Simone ; Prandini, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-5dcb60404b394117cb39b05c7f7531e156dd877aac05b4a252329a81769f84bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithm design and analysis</topic><topic>Consensus</topic><topic>Convergence</topic><topic>Distributed algorithms</topic><topic>distributed optimization</topic><topic>Linear programming</topic><topic>Minimization</topic><topic>Optimization</topic><topic>proximal minimization</topic><topic>scenario approach</topic><topic>uncertain systems</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Margellos, Kostas</creatorcontrib><creatorcontrib>Falsone, Alessandro</creatorcontrib><creatorcontrib>Garatti, Simone</creatorcontrib><creatorcontrib>Prandini, Maria</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Margellos, Kostas</au><au>Falsone, Alessandro</au><au>Garatti, Simone</au><au>Prandini, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Constrained Optimization and Consensus in Uncertain Networks via Proximal Minimization</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2018-05</date><risdate>2018</risdate><volume>63</volume><issue>5</issue><spage>1372</spage><epage>1387</epage><pages>1372-1387</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We provide a unifying framework for distributed convex optimization over time-varying networks, in the presence of constraints and uncertainty, features that are typically treated separately in the literature. We adopt a proximal minimization perspective and show that this set-up allows us to bypass the difficulties of existing algorithms while simplifying the underlying mathematical analysis. We develop an iterative algorithm and show the convergence of the resulting scheme to some optimizer of the centralized problem. To deal with the case where the agents' constraint sets are affected by a possibly common uncertainty vector, we follow a scenario-based methodology and offer probabilistic guarantees regarding the feasibility properties of the resulting solution. To this end, we provide a distributed implementation of the scenario approach, allowing agents to use a different set of uncertainty scenarios in their local optimization programs. The efficacy of our algorithm is demonstrated by means of a numerical example related to a regression problem subject to regularization.</abstract><pub>IEEE</pub><doi>10.1109/TAC.2017.2747505</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5451-6892</orcidid><orcidid>https://orcid.org/0000-0001-8865-8568</orcidid><orcidid>https://orcid.org/0000-0001-7443-4117</orcidid><orcidid>https://orcid.org/0000-0002-2335-1490</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2018-05, Vol.63 (5), p.1372-1387
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_2017_2747505
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Consensus
Convergence
Distributed algorithms
distributed optimization
Linear programming
Minimization
Optimization
proximal minimization
scenario approach
uncertain systems
Uncertainty
title Distributed Constrained Optimization and Consensus in Uncertain Networks via Proximal Minimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A15%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Constrained%20Optimization%20and%20Consensus%20in%20Uncertain%20Networks%20via%20Proximal%20Minimization&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Margellos,%20Kostas&rft.date=2018-05&rft.volume=63&rft.issue=5&rft.spage=1372&rft.epage=1387&rft.pages=1372-1387&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2017.2747505&rft_dat=%3Ccrossref_RIE%3E10_1109_TAC_2017_2747505%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8022966&rfr_iscdi=true