Distributed Constrained Optimization and Consensus in Uncertain Networks via Proximal Minimization
We provide a unifying framework for distributed convex optimization over time-varying networks, in the presence of constraints and uncertainty, features that are typically treated separately in the literature. We adopt a proximal minimization perspective and show that this set-up allows us to bypass...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2018-05, Vol.63 (5), p.1372-1387 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1387 |
---|---|
container_issue | 5 |
container_start_page | 1372 |
container_title | IEEE transactions on automatic control |
container_volume | 63 |
creator | Margellos, Kostas Falsone, Alessandro Garatti, Simone Prandini, Maria |
description | We provide a unifying framework for distributed convex optimization over time-varying networks, in the presence of constraints and uncertainty, features that are typically treated separately in the literature. We adopt a proximal minimization perspective and show that this set-up allows us to bypass the difficulties of existing algorithms while simplifying the underlying mathematical analysis. We develop an iterative algorithm and show the convergence of the resulting scheme to some optimizer of the centralized problem. To deal with the case where the agents' constraint sets are affected by a possibly common uncertainty vector, we follow a scenario-based methodology and offer probabilistic guarantees regarding the feasibility properties of the resulting solution. To this end, we provide a distributed implementation of the scenario approach, allowing agents to use a different set of uncertainty scenarios in their local optimization programs. The efficacy of our algorithm is demonstrated by means of a numerical example related to a regression problem subject to regularization. |
doi_str_mv | 10.1109/TAC.2017.2747505 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2017_2747505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8022966</ieee_id><sourcerecordid>10_1109_TAC_2017_2747505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-5dcb60404b394117cb39b05c7f7531e156dd877aac05b4a252329a81769f84bc3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqWwR2LjH0jxOH4kyypAQSqURbuObMeRDK1T2S6vr8dVq65mrube0cxB6BbIBIDU98tpM6EE5IRKJjnhZ2gEnFcF5bQ8RyNCoCpqWolLdBXjR5aCMRgh_eBiCk7vku1wM_gslPO5X2yT27g_ldzgsfKHofVxF7HzeOWNDSk78ZtN30P4jPjLKfwehh-3UWv86vwpfY0uerWO9uZYx2j19Lhsnov5YvbSTOeFKSWkgndGC8II02XNAKTJVRNuZC95CRa46LpKSqUM4Zqp_V-0VhVIUfcV06YcI3LYa8IQY7B9uw35mPDbAmn3jNrMqN0zao-McuTuEHHW2pO9IpTWQpT_FYxkPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Distributed Constrained Optimization and Consensus in Uncertain Networks via Proximal Minimization</title><source>IEEE Electronic Library (IEL)</source><creator>Margellos, Kostas ; Falsone, Alessandro ; Garatti, Simone ; Prandini, Maria</creator><creatorcontrib>Margellos, Kostas ; Falsone, Alessandro ; Garatti, Simone ; Prandini, Maria</creatorcontrib><description>We provide a unifying framework for distributed convex optimization over time-varying networks, in the presence of constraints and uncertainty, features that are typically treated separately in the literature. We adopt a proximal minimization perspective and show that this set-up allows us to bypass the difficulties of existing algorithms while simplifying the underlying mathematical analysis. We develop an iterative algorithm and show the convergence of the resulting scheme to some optimizer of the centralized problem. To deal with the case where the agents' constraint sets are affected by a possibly common uncertainty vector, we follow a scenario-based methodology and offer probabilistic guarantees regarding the feasibility properties of the resulting solution. To this end, we provide a distributed implementation of the scenario approach, allowing agents to use a different set of uncertainty scenarios in their local optimization programs. The efficacy of our algorithm is demonstrated by means of a numerical example related to a regression problem subject to regularization.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2017.2747505</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Consensus ; Convergence ; Distributed algorithms ; distributed optimization ; Linear programming ; Minimization ; Optimization ; proximal minimization ; scenario approach ; uncertain systems ; Uncertainty</subject><ispartof>IEEE transactions on automatic control, 2018-05, Vol.63 (5), p.1372-1387</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-5dcb60404b394117cb39b05c7f7531e156dd877aac05b4a252329a81769f84bc3</citedby><cites>FETCH-LOGICAL-c371t-5dcb60404b394117cb39b05c7f7531e156dd877aac05b4a252329a81769f84bc3</cites><orcidid>0000-0002-5451-6892 ; 0000-0001-8865-8568 ; 0000-0001-7443-4117 ; 0000-0002-2335-1490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8022966$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8022966$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Margellos, Kostas</creatorcontrib><creatorcontrib>Falsone, Alessandro</creatorcontrib><creatorcontrib>Garatti, Simone</creatorcontrib><creatorcontrib>Prandini, Maria</creatorcontrib><title>Distributed Constrained Optimization and Consensus in Uncertain Networks via Proximal Minimization</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We provide a unifying framework for distributed convex optimization over time-varying networks, in the presence of constraints and uncertainty, features that are typically treated separately in the literature. We adopt a proximal minimization perspective and show that this set-up allows us to bypass the difficulties of existing algorithms while simplifying the underlying mathematical analysis. We develop an iterative algorithm and show the convergence of the resulting scheme to some optimizer of the centralized problem. To deal with the case where the agents' constraint sets are affected by a possibly common uncertainty vector, we follow a scenario-based methodology and offer probabilistic guarantees regarding the feasibility properties of the resulting solution. To this end, we provide a distributed implementation of the scenario approach, allowing agents to use a different set of uncertainty scenarios in their local optimization programs. The efficacy of our algorithm is demonstrated by means of a numerical example related to a regression problem subject to regularization.</description><subject>Algorithm design and analysis</subject><subject>Consensus</subject><subject>Convergence</subject><subject>Distributed algorithms</subject><subject>distributed optimization</subject><subject>Linear programming</subject><subject>Minimization</subject><subject>Optimization</subject><subject>proximal minimization</subject><subject>scenario approach</subject><subject>uncertain systems</subject><subject>Uncertainty</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqWwR2LjH0jxOH4kyypAQSqURbuObMeRDK1T2S6vr8dVq65mrube0cxB6BbIBIDU98tpM6EE5IRKJjnhZ2gEnFcF5bQ8RyNCoCpqWolLdBXjR5aCMRgh_eBiCk7vku1wM_gslPO5X2yT27g_ldzgsfKHofVxF7HzeOWNDSk78ZtN30P4jPjLKfwehh-3UWv86vwpfY0uerWO9uZYx2j19Lhsnov5YvbSTOeFKSWkgndGC8II02XNAKTJVRNuZC95CRa46LpKSqUM4Zqp_V-0VhVIUfcV06YcI3LYa8IQY7B9uw35mPDbAmn3jNrMqN0zao-McuTuEHHW2pO9IpTWQpT_FYxkPw</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Margellos, Kostas</creator><creator>Falsone, Alessandro</creator><creator>Garatti, Simone</creator><creator>Prandini, Maria</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5451-6892</orcidid><orcidid>https://orcid.org/0000-0001-8865-8568</orcidid><orcidid>https://orcid.org/0000-0001-7443-4117</orcidid><orcidid>https://orcid.org/0000-0002-2335-1490</orcidid></search><sort><creationdate>201805</creationdate><title>Distributed Constrained Optimization and Consensus in Uncertain Networks via Proximal Minimization</title><author>Margellos, Kostas ; Falsone, Alessandro ; Garatti, Simone ; Prandini, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-5dcb60404b394117cb39b05c7f7531e156dd877aac05b4a252329a81769f84bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithm design and analysis</topic><topic>Consensus</topic><topic>Convergence</topic><topic>Distributed algorithms</topic><topic>distributed optimization</topic><topic>Linear programming</topic><topic>Minimization</topic><topic>Optimization</topic><topic>proximal minimization</topic><topic>scenario approach</topic><topic>uncertain systems</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Margellos, Kostas</creatorcontrib><creatorcontrib>Falsone, Alessandro</creatorcontrib><creatorcontrib>Garatti, Simone</creatorcontrib><creatorcontrib>Prandini, Maria</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Margellos, Kostas</au><au>Falsone, Alessandro</au><au>Garatti, Simone</au><au>Prandini, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Constrained Optimization and Consensus in Uncertain Networks via Proximal Minimization</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2018-05</date><risdate>2018</risdate><volume>63</volume><issue>5</issue><spage>1372</spage><epage>1387</epage><pages>1372-1387</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We provide a unifying framework for distributed convex optimization over time-varying networks, in the presence of constraints and uncertainty, features that are typically treated separately in the literature. We adopt a proximal minimization perspective and show that this set-up allows us to bypass the difficulties of existing algorithms while simplifying the underlying mathematical analysis. We develop an iterative algorithm and show the convergence of the resulting scheme to some optimizer of the centralized problem. To deal with the case where the agents' constraint sets are affected by a possibly common uncertainty vector, we follow a scenario-based methodology and offer probabilistic guarantees regarding the feasibility properties of the resulting solution. To this end, we provide a distributed implementation of the scenario approach, allowing agents to use a different set of uncertainty scenarios in their local optimization programs. The efficacy of our algorithm is demonstrated by means of a numerical example related to a regression problem subject to regularization.</abstract><pub>IEEE</pub><doi>10.1109/TAC.2017.2747505</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5451-6892</orcidid><orcidid>https://orcid.org/0000-0001-8865-8568</orcidid><orcidid>https://orcid.org/0000-0001-7443-4117</orcidid><orcidid>https://orcid.org/0000-0002-2335-1490</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2018-05, Vol.63 (5), p.1372-1387 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAC_2017_2747505 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Consensus Convergence Distributed algorithms distributed optimization Linear programming Minimization Optimization proximal minimization scenario approach uncertain systems Uncertainty |
title | Distributed Constrained Optimization and Consensus in Uncertain Networks via Proximal Minimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A15%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Constrained%20Optimization%20and%20Consensus%20in%20Uncertain%20Networks%20via%20Proximal%20Minimization&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Margellos,%20Kostas&rft.date=2018-05&rft.volume=63&rft.issue=5&rft.spage=1372&rft.epage=1387&rft.pages=1372-1387&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2017.2747505&rft_dat=%3Ccrossref_RIE%3E10_1109_TAC_2017_2747505%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8022966&rfr_iscdi=true |