Stability Analysis of Discrete-Time Infinite-Horizon Optimal Control With Discounted Cost

We analyze the stability of general nonlinear discrete-time systems controlled by an optimal sequence of inputs that minimizes an infinite-horizon discounted cost. First, assumptions related to the controllability of the system and its detectability with respect to the stage cost are made. Uniform s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2017-06, Vol.62 (6), p.2736-2749
Hauptverfasser: Postoyan, Romain, Busoniu, Lucian, Nesic, Dragan, Daafouz, Jamal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2749
container_issue 6
container_start_page 2736
container_title IEEE transactions on automatic control
container_volume 62
creator Postoyan, Romain
Busoniu, Lucian
Nesic, Dragan
Daafouz, Jamal
description We analyze the stability of general nonlinear discrete-time systems controlled by an optimal sequence of inputs that minimizes an infinite-horizon discounted cost. First, assumptions related to the controllability of the system and its detectability with respect to the stage cost are made. Uniform semiglobal and practical stability of the closed-loop system is then established, where the adjustable parameter is the discount factor. Stronger stability properties are thereupon guaranteed by gradually strengthening the assumptions. Next, we show that the Lyapunov function used to prove stability is continuous under additional conditions, implying that stability has a certain amount of nominal robustness. The presented approach is flexible and we show that robust stability can still be guaranteed when the sequence of inputs applied to the system is no longer optimal but near-optimal. We also analyze stability for cost functions in which the importance of the stage cost increases with time, opposite to discounting. Finally, we exploit stability to derive new relationships between the optimal value functions of the discounted and undiscounted problems, when the latter is well-defined.
doi_str_mv 10.1109/TAC.2016.2616644
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2016_2616644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7588063</ieee_id><sourcerecordid>1904852647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-b745e8687532655ef12c3625754f7c9fd5f43fd412f1c60c0a1f7913deb139873</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wcuCJw9bM_na7LHUjxYKPVgRT2G7m9CU7aYmqVD_elO3eBpm5vceMw-hW8AjAFw-LseTEcEgRkSAEIydoQFwLnPCCT1HA4xB5iWR4hJdhbBJbWJggD7fYrWyrY2HbNxV7SHYkDmTPdlQex11vrRbnc06Yzubuqnz9sd12WIX7bZqs4nrondt9mHj-k_j9l3UTZqHeI0uTNUGfXOqQ_T-8rycTPP54nU2Gc_zmooi5quCcS2FLDglgnNtgKQF4QVnpqhL03DDqGkYEAO1wDWuwBQl0EavgJayoEP00Puuq1btfLrLH5SrrJqO5-o4w8A4KUn5DYm979mdd197HaLauL1PfwcFJWaSE8GOjrinau9C8Nr82wJWx7BVClsdw1ansJPkrpdYrfU_XnApsaD0FyQyeQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904852647</pqid></control><display><type>article</type><title>Stability Analysis of Discrete-Time Infinite-Horizon Optimal Control With Discounted Cost</title><source>IEEE Electronic Library (IEL)</source><creator>Postoyan, Romain ; Busoniu, Lucian ; Nesic, Dragan ; Daafouz, Jamal</creator><creatorcontrib>Postoyan, Romain ; Busoniu, Lucian ; Nesic, Dragan ; Daafouz, Jamal</creatorcontrib><description>We analyze the stability of general nonlinear discrete-time systems controlled by an optimal sequence of inputs that minimizes an infinite-horizon discounted cost. First, assumptions related to the controllability of the system and its detectability with respect to the stage cost are made. Uniform semiglobal and practical stability of the closed-loop system is then established, where the adjustable parameter is the discount factor. Stronger stability properties are thereupon guaranteed by gradually strengthening the assumptions. Next, we show that the Lyapunov function used to prove stability is continuous under additional conditions, implying that stability has a certain amount of nominal robustness. The presented approach is flexible and we show that robust stability can still be guaranteed when the sequence of inputs applied to the system is no longer optimal but near-optimal. We also analyze stability for cost functions in which the importance of the stage cost increases with time, opposite to discounting. Finally, we exploit stability to derive new relationships between the optimal value functions of the discounted and undiscounted problems, when the latter is well-defined.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2016.2616644</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymptotic stability ; Automatic ; Continuity (mathematics) ; Control stability ; Control systems ; Controllability ; Cost analysis ; Cost engineering ; Cost function ; Discrete time systems ; Dynamic programming ; Economic models ; Engineering Sciences ; Lyapunov methods ; Nonlinearity ; Optimal control ; Robustness ; Stability analysis ; Systems analysis</subject><ispartof>IEEE transactions on automatic control, 2017-06, Vol.62 (6), p.2736-2749</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-b745e8687532655ef12c3625754f7c9fd5f43fd412f1c60c0a1f7913deb139873</citedby><cites>FETCH-LOGICAL-c367t-b745e8687532655ef12c3625754f7c9fd5f43fd412f1c60c0a1f7913deb139873</cites><orcidid>0000-0002-2454-602X ; 0000-0001-8313-8790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7588063$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7588063$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-01452929$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Postoyan, Romain</creatorcontrib><creatorcontrib>Busoniu, Lucian</creatorcontrib><creatorcontrib>Nesic, Dragan</creatorcontrib><creatorcontrib>Daafouz, Jamal</creatorcontrib><title>Stability Analysis of Discrete-Time Infinite-Horizon Optimal Control With Discounted Cost</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We analyze the stability of general nonlinear discrete-time systems controlled by an optimal sequence of inputs that minimizes an infinite-horizon discounted cost. First, assumptions related to the controllability of the system and its detectability with respect to the stage cost are made. Uniform semiglobal and practical stability of the closed-loop system is then established, where the adjustable parameter is the discount factor. Stronger stability properties are thereupon guaranteed by gradually strengthening the assumptions. Next, we show that the Lyapunov function used to prove stability is continuous under additional conditions, implying that stability has a certain amount of nominal robustness. The presented approach is flexible and we show that robust stability can still be guaranteed when the sequence of inputs applied to the system is no longer optimal but near-optimal. We also analyze stability for cost functions in which the importance of the stage cost increases with time, opposite to discounting. Finally, we exploit stability to derive new relationships between the optimal value functions of the discounted and undiscounted problems, when the latter is well-defined.</description><subject>Asymptotic stability</subject><subject>Automatic</subject><subject>Continuity (mathematics)</subject><subject>Control stability</subject><subject>Control systems</subject><subject>Controllability</subject><subject>Cost analysis</subject><subject>Cost engineering</subject><subject>Cost function</subject><subject>Discrete time systems</subject><subject>Dynamic programming</subject><subject>Economic models</subject><subject>Engineering Sciences</subject><subject>Lyapunov methods</subject><subject>Nonlinearity</subject><subject>Optimal control</subject><subject>Robustness</subject><subject>Stability analysis</subject><subject>Systems analysis</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wcuCJw9bM_na7LHUjxYKPVgRT2G7m9CU7aYmqVD_elO3eBpm5vceMw-hW8AjAFw-LseTEcEgRkSAEIydoQFwLnPCCT1HA4xB5iWR4hJdhbBJbWJggD7fYrWyrY2HbNxV7SHYkDmTPdlQex11vrRbnc06Yzubuqnz9sd12WIX7bZqs4nrondt9mHj-k_j9l3UTZqHeI0uTNUGfXOqQ_T-8rycTPP54nU2Gc_zmooi5quCcS2FLDglgnNtgKQF4QVnpqhL03DDqGkYEAO1wDWuwBQl0EavgJayoEP00Puuq1btfLrLH5SrrJqO5-o4w8A4KUn5DYm979mdd197HaLauL1PfwcFJWaSE8GOjrinau9C8Nr82wJWx7BVClsdw1ansJPkrpdYrfU_XnApsaD0FyQyeQg</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Postoyan, Romain</creator><creator>Busoniu, Lucian</creator><creator>Nesic, Dragan</creator><creator>Daafouz, Jamal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2454-602X</orcidid><orcidid>https://orcid.org/0000-0001-8313-8790</orcidid></search><sort><creationdate>201706</creationdate><title>Stability Analysis of Discrete-Time Infinite-Horizon Optimal Control With Discounted Cost</title><author>Postoyan, Romain ; Busoniu, Lucian ; Nesic, Dragan ; Daafouz, Jamal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-b745e8687532655ef12c3625754f7c9fd5f43fd412f1c60c0a1f7913deb139873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Asymptotic stability</topic><topic>Automatic</topic><topic>Continuity (mathematics)</topic><topic>Control stability</topic><topic>Control systems</topic><topic>Controllability</topic><topic>Cost analysis</topic><topic>Cost engineering</topic><topic>Cost function</topic><topic>Discrete time systems</topic><topic>Dynamic programming</topic><topic>Economic models</topic><topic>Engineering Sciences</topic><topic>Lyapunov methods</topic><topic>Nonlinearity</topic><topic>Optimal control</topic><topic>Robustness</topic><topic>Stability analysis</topic><topic>Systems analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Postoyan, Romain</creatorcontrib><creatorcontrib>Busoniu, Lucian</creatorcontrib><creatorcontrib>Nesic, Dragan</creatorcontrib><creatorcontrib>Daafouz, Jamal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Postoyan, Romain</au><au>Busoniu, Lucian</au><au>Nesic, Dragan</au><au>Daafouz, Jamal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability Analysis of Discrete-Time Infinite-Horizon Optimal Control With Discounted Cost</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2017-06</date><risdate>2017</risdate><volume>62</volume><issue>6</issue><spage>2736</spage><epage>2749</epage><pages>2736-2749</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We analyze the stability of general nonlinear discrete-time systems controlled by an optimal sequence of inputs that minimizes an infinite-horizon discounted cost. First, assumptions related to the controllability of the system and its detectability with respect to the stage cost are made. Uniform semiglobal and practical stability of the closed-loop system is then established, where the adjustable parameter is the discount factor. Stronger stability properties are thereupon guaranteed by gradually strengthening the assumptions. Next, we show that the Lyapunov function used to prove stability is continuous under additional conditions, implying that stability has a certain amount of nominal robustness. The presented approach is flexible and we show that robust stability can still be guaranteed when the sequence of inputs applied to the system is no longer optimal but near-optimal. We also analyze stability for cost functions in which the importance of the stage cost increases with time, opposite to discounting. Finally, we exploit stability to derive new relationships between the optimal value functions of the discounted and undiscounted problems, when the latter is well-defined.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2016.2616644</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2454-602X</orcidid><orcidid>https://orcid.org/0000-0001-8313-8790</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2017-06, Vol.62 (6), p.2736-2749
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_2016_2616644
source IEEE Electronic Library (IEL)
subjects Asymptotic stability
Automatic
Continuity (mathematics)
Control stability
Control systems
Controllability
Cost analysis
Cost engineering
Cost function
Discrete time systems
Dynamic programming
Economic models
Engineering Sciences
Lyapunov methods
Nonlinearity
Optimal control
Robustness
Stability analysis
Systems analysis
title Stability Analysis of Discrete-Time Infinite-Horizon Optimal Control With Discounted Cost
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A31%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20Analysis%20of%20Discrete-Time%20Infinite-Horizon%20Optimal%20Control%20With%20Discounted%20Cost&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Postoyan,%20Romain&rft.date=2017-06&rft.volume=62&rft.issue=6&rft.spage=2736&rft.epage=2749&rft.pages=2736-2749&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2016.2616644&rft_dat=%3Cproquest_RIE%3E1904852647%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1904852647&rft_id=info:pmid/&rft_ieee_id=7588063&rfr_iscdi=true