Estimation With Strategic Sensors
We introduce a model of estimation in the presence of strategic, self-interested sensors. We employ a game-theoretic setup to model the interaction between the sensors and the receiver. The cost function of the receiver is equal to the estimation error variance while the cost function of the sensor...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2017-02, Vol.62 (2), p.724-739 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 739 |
---|---|
container_issue | 2 |
container_start_page | 724 |
container_title | IEEE transactions on automatic control |
container_volume | 62 |
creator | Farokhi, Farhad Teixeira, Andre M. H. Langbort, Cedric |
description | We introduce a model of estimation in the presence of strategic, self-interested sensors. We employ a game-theoretic setup to model the interaction between the sensors and the receiver. The cost function of the receiver is equal to the estimation error variance while the cost function of the sensor contains an extra term which is determined by its private information. We start by the single sensor case in which the receiver has access to a noisy but honest side information in addition to the message transmitted by a strategic sensor. We study both static and dynamic estimation problems. For both these problems, we characterize a family of equilibria in which the sensor and the receiver employ simple strategies. Interestingly, for the dynamic estimation problem, we find an equilibrium for which the strategic sensor uses a memory-less policy. We generalize the static estimation setup to multiple sensors with synchronous communication structure (i.e., all the sensors transmit their messages simultaneously). We prove the maybe surprising fact that, for the constructed equilibrium in affine strategies, the estimation quality degrades as the number of sensors increases. However, if the sensors are herding (i.e., copying each other policies), the quality of the receiver's estimation improves as the number of sensors increases. Finally, we consider the asynchronous communication structure (i.e., the sensors transmit their messages sequentially). |
doi_str_mv | 10.1109/TAC.2016.2571779 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2016_2571779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7476847</ieee_id><sourcerecordid>1863400774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-c60239d83329f5ebb4db1085041ff1af680c539afc6da76b21a9bba4abf3f8ca3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wU3FrVNz886y1PqAgotWXYZkmtQp2qlJBvHfmzLF1eXCdw6HD6FLwGMArO-Wk-mYYBBjwiVIqY_QADhXFeGEHqMBxqAqTZQ4RWcpbcorGIMBup6l3HzZ3LTb0XuTP0aLHG3266YeLfw2tTGdo5NgP5O_ONwhen2YLadP1fzl8Xk6mVc1A5mrWmBC9UpRSnTg3jm2coAVxwxCABuEwjWn2oZarKwUjoDVzllmXaBB1ZYO0W3fm378rnNmF8uu-Gta25j75m1i2rg2XWeooFzjgt_0-C62351P2WzaLm7LQgNKUIaxlKxQuKfq2KYUffivBWz23kzxZvbezMFbiVz1kcZ7_49LJoVikv4B7NVoDQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1863400774</pqid></control><display><type>article</type><title>Estimation With Strategic Sensors</title><source>IEEE Electronic Library (IEL)</source><creator>Farokhi, Farhad ; Teixeira, Andre M. H. ; Langbort, Cedric</creator><creatorcontrib>Farokhi, Farhad ; Teixeira, Andre M. H. ; Langbort, Cedric</creatorcontrib><description>We introduce a model of estimation in the presence of strategic, self-interested sensors. We employ a game-theoretic setup to model the interaction between the sensors and the receiver. The cost function of the receiver is equal to the estimation error variance while the cost function of the sensor contains an extra term which is determined by its private information. We start by the single sensor case in which the receiver has access to a noisy but honest side information in addition to the message transmitted by a strategic sensor. We study both static and dynamic estimation problems. For both these problems, we characterize a family of equilibria in which the sensor and the receiver employ simple strategies. Interestingly, for the dynamic estimation problem, we find an equilibrium for which the strategic sensor uses a memory-less policy. We generalize the static estimation setup to multiple sensors with synchronous communication structure (i.e., all the sensors transmit their messages simultaneously). We prove the maybe surprising fact that, for the constructed equilibrium in affine strategies, the estimation quality degrades as the number of sensors increases. However, if the sensors are herding (i.e., copying each other policies), the quality of the receiver's estimation improves as the number of sensors increases. Finally, we consider the asynchronous communication structure (i.e., the sensors transmit their messages sequentially).</description><identifier>ISSN: 0018-9286</identifier><identifier>ISSN: 1558-2523</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2016.2571779</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asynchronous communication ; Copying ; Cost function ; Error detection ; Estimation ; Estimation error ; Game theory ; Kalman filtering ; Messages ; Noise measurement ; Receivers ; Sensor phenomena and characterization ; Sensors ; strategic sensors</subject><ispartof>IEEE transactions on automatic control, 2017-02, Vol.62 (2), p.724-739</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-c60239d83329f5ebb4db1085041ff1af680c539afc6da76b21a9bba4abf3f8ca3</citedby><cites>FETCH-LOGICAL-c417t-c60239d83329f5ebb4db1085041ff1af680c539afc6da76b21a9bba4abf3f8ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7476847$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7476847$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-363590$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Farokhi, Farhad</creatorcontrib><creatorcontrib>Teixeira, Andre M. H.</creatorcontrib><creatorcontrib>Langbort, Cedric</creatorcontrib><title>Estimation With Strategic Sensors</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We introduce a model of estimation in the presence of strategic, self-interested sensors. We employ a game-theoretic setup to model the interaction between the sensors and the receiver. The cost function of the receiver is equal to the estimation error variance while the cost function of the sensor contains an extra term which is determined by its private information. We start by the single sensor case in which the receiver has access to a noisy but honest side information in addition to the message transmitted by a strategic sensor. We study both static and dynamic estimation problems. For both these problems, we characterize a family of equilibria in which the sensor and the receiver employ simple strategies. Interestingly, for the dynamic estimation problem, we find an equilibrium for which the strategic sensor uses a memory-less policy. We generalize the static estimation setup to multiple sensors with synchronous communication structure (i.e., all the sensors transmit their messages simultaneously). We prove the maybe surprising fact that, for the constructed equilibrium in affine strategies, the estimation quality degrades as the number of sensors increases. However, if the sensors are herding (i.e., copying each other policies), the quality of the receiver's estimation improves as the number of sensors increases. Finally, we consider the asynchronous communication structure (i.e., the sensors transmit their messages sequentially).</description><subject>Asynchronous communication</subject><subject>Copying</subject><subject>Cost function</subject><subject>Error detection</subject><subject>Estimation</subject><subject>Estimation error</subject><subject>Game theory</subject><subject>Kalman filtering</subject><subject>Messages</subject><subject>Noise measurement</subject><subject>Receivers</subject><subject>Sensor phenomena and characterization</subject><subject>Sensors</subject><subject>strategic sensors</subject><issn>0018-9286</issn><issn>1558-2523</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKt7wU3FrVNz886y1PqAgotWXYZkmtQp2qlJBvHfmzLF1eXCdw6HD6FLwGMArO-Wk-mYYBBjwiVIqY_QADhXFeGEHqMBxqAqTZQ4RWcpbcorGIMBup6l3HzZ3LTb0XuTP0aLHG3266YeLfw2tTGdo5NgP5O_ONwhen2YLadP1fzl8Xk6mVc1A5mrWmBC9UpRSnTg3jm2coAVxwxCABuEwjWn2oZarKwUjoDVzllmXaBB1ZYO0W3fm378rnNmF8uu-Gta25j75m1i2rg2XWeooFzjgt_0-C62351P2WzaLm7LQgNKUIaxlKxQuKfq2KYUffivBWz23kzxZvbezMFbiVz1kcZ7_49LJoVikv4B7NVoDQ</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Farokhi, Farhad</creator><creator>Teixeira, Andre M. H.</creator><creator>Langbort, Cedric</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope></search><sort><creationdate>20170201</creationdate><title>Estimation With Strategic Sensors</title><author>Farokhi, Farhad ; Teixeira, Andre M. H. ; Langbort, Cedric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-c60239d83329f5ebb4db1085041ff1af680c539afc6da76b21a9bba4abf3f8ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Asynchronous communication</topic><topic>Copying</topic><topic>Cost function</topic><topic>Error detection</topic><topic>Estimation</topic><topic>Estimation error</topic><topic>Game theory</topic><topic>Kalman filtering</topic><topic>Messages</topic><topic>Noise measurement</topic><topic>Receivers</topic><topic>Sensor phenomena and characterization</topic><topic>Sensors</topic><topic>strategic sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farokhi, Farhad</creatorcontrib><creatorcontrib>Teixeira, Andre M. H.</creatorcontrib><creatorcontrib>Langbort, Cedric</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Farokhi, Farhad</au><au>Teixeira, Andre M. H.</au><au>Langbort, Cedric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation With Strategic Sensors</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>62</volume><issue>2</issue><spage>724</spage><epage>739</epage><pages>724-739</pages><issn>0018-9286</issn><issn>1558-2523</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We introduce a model of estimation in the presence of strategic, self-interested sensors. We employ a game-theoretic setup to model the interaction between the sensors and the receiver. The cost function of the receiver is equal to the estimation error variance while the cost function of the sensor contains an extra term which is determined by its private information. We start by the single sensor case in which the receiver has access to a noisy but honest side information in addition to the message transmitted by a strategic sensor. We study both static and dynamic estimation problems. For both these problems, we characterize a family of equilibria in which the sensor and the receiver employ simple strategies. Interestingly, for the dynamic estimation problem, we find an equilibrium for which the strategic sensor uses a memory-less policy. We generalize the static estimation setup to multiple sensors with synchronous communication structure (i.e., all the sensors transmit their messages simultaneously). We prove the maybe surprising fact that, for the constructed equilibrium in affine strategies, the estimation quality degrades as the number of sensors increases. However, if the sensors are herding (i.e., copying each other policies), the quality of the receiver's estimation improves as the number of sensors increases. Finally, we consider the asynchronous communication structure (i.e., the sensors transmit their messages sequentially).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2016.2571779</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2017-02, Vol.62 (2), p.724-739 |
issn | 0018-9286 1558-2523 1558-2523 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAC_2016_2571779 |
source | IEEE Electronic Library (IEL) |
subjects | Asynchronous communication Copying Cost function Error detection Estimation Estimation error Game theory Kalman filtering Messages Noise measurement Receivers Sensor phenomena and characterization Sensors strategic sensors |
title | Estimation With Strategic Sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A46%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20With%20Strategic%20Sensors&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Farokhi,%20Farhad&rft.date=2017-02-01&rft.volume=62&rft.issue=2&rft.spage=724&rft.epage=739&rft.pages=724-739&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2016.2571779&rft_dat=%3Cproquest_RIE%3E1863400774%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1863400774&rft_id=info:pmid/&rft_ieee_id=7476847&rfr_iscdi=true |