Adaptive Dynamic Programming for Stochastic Systems With State and Control Dependent Noise

In this technical note, the adaptive optimal control problem is investigated for a class of continuous-time stochastic systems subject to multiplicative noise. A novel non-model-based optimal control design methodology is employed to iteratively update the control policy on-line by using directly th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2016-12, Vol.61 (12), p.4170-4175
Hauptverfasser: Bian, Tao, Jiang, Yu, Jiang, Zhong-Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4175
container_issue 12
container_start_page 4170
container_title IEEE transactions on automatic control
container_volume 61
creator Bian, Tao
Jiang, Yu
Jiang, Zhong-Ping
description In this technical note, the adaptive optimal control problem is investigated for a class of continuous-time stochastic systems subject to multiplicative noise. A novel non-model-based optimal control design methodology is employed to iteratively update the control policy on-line by using directly the data of the system state and input. Both adaptive dynamic programming (ADP) and robust ADP algorithms are developed, along with rigorous stability and convergence analysis. The effectiveness of the obtained methods is illustrated by an example arising from biological sensorimotor control.
doi_str_mv 10.1109/TAC.2016.2550518
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2016_2550518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7447723</ieee_id><sourcerecordid>1846534842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-d15d3c6bfdabe56be0d37457289b8c609b62cf12ff251485153f724ba158865c3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z8b_ZYtn5BUaEVwUvIZpN2S3ezJqnQf--WFk_DzDzvDDwA3GI0wRgVD8tpOSEIiwnhHHEsz8AIcy4zwgk9ByOEsMwKIsUluIpxM7SCMTwC39Na96n5tXC273TbGPgR_Crotm26FXQ-wEXyZq1jGlaLfUy2jfCrSethrpOFuqth6bsU_BbObG-72nYJvvkm2mtw4fQ22ptTHYPPp8dl-ZLN359fy-k8M5TSlNWY19SIytW6slxUFtU0ZzwnsqikEaioBDEOE-cIx0xyzKnLCas05lIKbugY3B_v9sH_7GxMauN3oRteKiyZ4JRJRgYKHSkTfIzBOtWHptVhrzBSB4NqMKgOBtXJ4BC5O0Yaa-0_njOW54TSPw18bCU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1846534842</pqid></control><display><type>article</type><title>Adaptive Dynamic Programming for Stochastic Systems With State and Control Dependent Noise</title><source>IEEE Electronic Library (IEL)</source><creator>Bian, Tao ; Jiang, Yu ; Jiang, Zhong-Ping</creator><creatorcontrib>Bian, Tao ; Jiang, Yu ; Jiang, Zhong-Ping</creatorcontrib><description>In this technical note, the adaptive optimal control problem is investigated for a class of continuous-time stochastic systems subject to multiplicative noise. A novel non-model-based optimal control design methodology is employed to iteratively update the control policy on-line by using directly the data of the system state and input. Both adaptive dynamic programming (ADP) and robust ADP algorithms are developed, along with rigorous stability and convergence analysis. The effectiveness of the obtained methods is illustrated by an example arising from biological sensorimotor control.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2016.2550518</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Adaptive dynamic programming ; adaptive optimal control ; Adaptive systems ; Algorithm design and analysis ; Algorithms ; Convergence ; Dynamic programming ; Noise control ; Optimal control ; Robustness ; Stability analysis ; Stochastic processes ; Stochastic systems</subject><ispartof>IEEE transactions on automatic control, 2016-12, Vol.61 (12), p.4170-4175</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-d15d3c6bfdabe56be0d37457289b8c609b62cf12ff251485153f724ba158865c3</citedby><cites>FETCH-LOGICAL-c333t-d15d3c6bfdabe56be0d37457289b8c609b62cf12ff251485153f724ba158865c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7447723$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7447723$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bian, Tao</creatorcontrib><creatorcontrib>Jiang, Yu</creatorcontrib><creatorcontrib>Jiang, Zhong-Ping</creatorcontrib><title>Adaptive Dynamic Programming for Stochastic Systems With State and Control Dependent Noise</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>In this technical note, the adaptive optimal control problem is investigated for a class of continuous-time stochastic systems subject to multiplicative noise. A novel non-model-based optimal control design methodology is employed to iteratively update the control policy on-line by using directly the data of the system state and input. Both adaptive dynamic programming (ADP) and robust ADP algorithms are developed, along with rigorous stability and convergence analysis. The effectiveness of the obtained methods is illustrated by an example arising from biological sensorimotor control.</description><subject>Adaptive control</subject><subject>Adaptive dynamic programming</subject><subject>adaptive optimal control</subject><subject>Adaptive systems</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Convergence</subject><subject>Dynamic programming</subject><subject>Noise control</subject><subject>Optimal control</subject><subject>Robustness</subject><subject>Stability analysis</subject><subject>Stochastic processes</subject><subject>Stochastic systems</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z8b_ZYtn5BUaEVwUvIZpN2S3ezJqnQf--WFk_DzDzvDDwA3GI0wRgVD8tpOSEIiwnhHHEsz8AIcy4zwgk9ByOEsMwKIsUluIpxM7SCMTwC39Na96n5tXC273TbGPgR_Crotm26FXQ-wEXyZq1jGlaLfUy2jfCrSethrpOFuqth6bsU_BbObG-72nYJvvkm2mtw4fQ22ptTHYPPp8dl-ZLN359fy-k8M5TSlNWY19SIytW6slxUFtU0ZzwnsqikEaioBDEOE-cIx0xyzKnLCas05lIKbugY3B_v9sH_7GxMauN3oRteKiyZ4JRJRgYKHSkTfIzBOtWHptVhrzBSB4NqMKgOBtXJ4BC5O0Yaa-0_njOW54TSPw18bCU</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Bian, Tao</creator><creator>Jiang, Yu</creator><creator>Jiang, Zhong-Ping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201612</creationdate><title>Adaptive Dynamic Programming for Stochastic Systems With State and Control Dependent Noise</title><author>Bian, Tao ; Jiang, Yu ; Jiang, Zhong-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-d15d3c6bfdabe56be0d37457289b8c609b62cf12ff251485153f724ba158865c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive control</topic><topic>Adaptive dynamic programming</topic><topic>adaptive optimal control</topic><topic>Adaptive systems</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Convergence</topic><topic>Dynamic programming</topic><topic>Noise control</topic><topic>Optimal control</topic><topic>Robustness</topic><topic>Stability analysis</topic><topic>Stochastic processes</topic><topic>Stochastic systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bian, Tao</creatorcontrib><creatorcontrib>Jiang, Yu</creatorcontrib><creatorcontrib>Jiang, Zhong-Ping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bian, Tao</au><au>Jiang, Yu</au><au>Jiang, Zhong-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Dynamic Programming for Stochastic Systems With State and Control Dependent Noise</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2016-12</date><risdate>2016</risdate><volume>61</volume><issue>12</issue><spage>4170</spage><epage>4175</epage><pages>4170-4175</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>In this technical note, the adaptive optimal control problem is investigated for a class of continuous-time stochastic systems subject to multiplicative noise. A novel non-model-based optimal control design methodology is employed to iteratively update the control policy on-line by using directly the data of the system state and input. Both adaptive dynamic programming (ADP) and robust ADP algorithms are developed, along with rigorous stability and convergence analysis. The effectiveness of the obtained methods is illustrated by an example arising from biological sensorimotor control.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2016.2550518</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2016-12, Vol.61 (12), p.4170-4175
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_2016_2550518
source IEEE Electronic Library (IEL)
subjects Adaptive control
Adaptive dynamic programming
adaptive optimal control
Adaptive systems
Algorithm design and analysis
Algorithms
Convergence
Dynamic programming
Noise control
Optimal control
Robustness
Stability analysis
Stochastic processes
Stochastic systems
title Adaptive Dynamic Programming for Stochastic Systems With State and Control Dependent Noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T23%3A59%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Dynamic%20Programming%20for%20Stochastic%20Systems%20With%20State%20and%20Control%20Dependent%20Noise&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Bian,%20Tao&rft.date=2016-12&rft.volume=61&rft.issue=12&rft.spage=4170&rft.epage=4175&rft.pages=4170-4175&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2016.2550518&rft_dat=%3Cproquest_RIE%3E1846534842%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1846534842&rft_id=info:pmid/&rft_ieee_id=7447723&rfr_iscdi=true