Adaptive Dynamic Programming for Stochastic Systems With State and Control Dependent Noise
In this technical note, the adaptive optimal control problem is investigated for a class of continuous-time stochastic systems subject to multiplicative noise. A novel non-model-based optimal control design methodology is employed to iteratively update the control policy on-line by using directly th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2016-12, Vol.61 (12), p.4170-4175 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4175 |
---|---|
container_issue | 12 |
container_start_page | 4170 |
container_title | IEEE transactions on automatic control |
container_volume | 61 |
creator | Bian, Tao Jiang, Yu Jiang, Zhong-Ping |
description | In this technical note, the adaptive optimal control problem is investigated for a class of continuous-time stochastic systems subject to multiplicative noise. A novel non-model-based optimal control design methodology is employed to iteratively update the control policy on-line by using directly the data of the system state and input. Both adaptive dynamic programming (ADP) and robust ADP algorithms are developed, along with rigorous stability and convergence analysis. The effectiveness of the obtained methods is illustrated by an example arising from biological sensorimotor control. |
doi_str_mv | 10.1109/TAC.2016.2550518 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2016_2550518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7447723</ieee_id><sourcerecordid>1846534842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-d15d3c6bfdabe56be0d37457289b8c609b62cf12ff251485153f724ba158865c3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z8b_ZYtn5BUaEVwUvIZpN2S3ezJqnQf--WFk_DzDzvDDwA3GI0wRgVD8tpOSEIiwnhHHEsz8AIcy4zwgk9ByOEsMwKIsUluIpxM7SCMTwC39Na96n5tXC273TbGPgR_Crotm26FXQ-wEXyZq1jGlaLfUy2jfCrSethrpOFuqth6bsU_BbObG-72nYJvvkm2mtw4fQ22ptTHYPPp8dl-ZLN359fy-k8M5TSlNWY19SIytW6slxUFtU0ZzwnsqikEaioBDEOE-cIx0xyzKnLCas05lIKbugY3B_v9sH_7GxMauN3oRteKiyZ4JRJRgYKHSkTfIzBOtWHptVhrzBSB4NqMKgOBtXJ4BC5O0Yaa-0_njOW54TSPw18bCU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1846534842</pqid></control><display><type>article</type><title>Adaptive Dynamic Programming for Stochastic Systems With State and Control Dependent Noise</title><source>IEEE Electronic Library (IEL)</source><creator>Bian, Tao ; Jiang, Yu ; Jiang, Zhong-Ping</creator><creatorcontrib>Bian, Tao ; Jiang, Yu ; Jiang, Zhong-Ping</creatorcontrib><description>In this technical note, the adaptive optimal control problem is investigated for a class of continuous-time stochastic systems subject to multiplicative noise. A novel non-model-based optimal control design methodology is employed to iteratively update the control policy on-line by using directly the data of the system state and input. Both adaptive dynamic programming (ADP) and robust ADP algorithms are developed, along with rigorous stability and convergence analysis. The effectiveness of the obtained methods is illustrated by an example arising from biological sensorimotor control.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2016.2550518</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Adaptive dynamic programming ; adaptive optimal control ; Adaptive systems ; Algorithm design and analysis ; Algorithms ; Convergence ; Dynamic programming ; Noise control ; Optimal control ; Robustness ; Stability analysis ; Stochastic processes ; Stochastic systems</subject><ispartof>IEEE transactions on automatic control, 2016-12, Vol.61 (12), p.4170-4175</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-d15d3c6bfdabe56be0d37457289b8c609b62cf12ff251485153f724ba158865c3</citedby><cites>FETCH-LOGICAL-c333t-d15d3c6bfdabe56be0d37457289b8c609b62cf12ff251485153f724ba158865c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7447723$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7447723$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bian, Tao</creatorcontrib><creatorcontrib>Jiang, Yu</creatorcontrib><creatorcontrib>Jiang, Zhong-Ping</creatorcontrib><title>Adaptive Dynamic Programming for Stochastic Systems With State and Control Dependent Noise</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>In this technical note, the adaptive optimal control problem is investigated for a class of continuous-time stochastic systems subject to multiplicative noise. A novel non-model-based optimal control design methodology is employed to iteratively update the control policy on-line by using directly the data of the system state and input. Both adaptive dynamic programming (ADP) and robust ADP algorithms are developed, along with rigorous stability and convergence analysis. The effectiveness of the obtained methods is illustrated by an example arising from biological sensorimotor control.</description><subject>Adaptive control</subject><subject>Adaptive dynamic programming</subject><subject>adaptive optimal control</subject><subject>Adaptive systems</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Convergence</subject><subject>Dynamic programming</subject><subject>Noise control</subject><subject>Optimal control</subject><subject>Robustness</subject><subject>Stability analysis</subject><subject>Stochastic processes</subject><subject>Stochastic systems</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89Z8b_ZYtn5BUaEVwUvIZpN2S3ezJqnQf--WFk_DzDzvDDwA3GI0wRgVD8tpOSEIiwnhHHEsz8AIcy4zwgk9ByOEsMwKIsUluIpxM7SCMTwC39Na96n5tXC273TbGPgR_Crotm26FXQ-wEXyZq1jGlaLfUy2jfCrSethrpOFuqth6bsU_BbObG-72nYJvvkm2mtw4fQ22ptTHYPPp8dl-ZLN359fy-k8M5TSlNWY19SIytW6slxUFtU0ZzwnsqikEaioBDEOE-cIx0xyzKnLCas05lIKbugY3B_v9sH_7GxMauN3oRteKiyZ4JRJRgYKHSkTfIzBOtWHptVhrzBSB4NqMKgOBtXJ4BC5O0Yaa-0_njOW54TSPw18bCU</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Bian, Tao</creator><creator>Jiang, Yu</creator><creator>Jiang, Zhong-Ping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201612</creationdate><title>Adaptive Dynamic Programming for Stochastic Systems With State and Control Dependent Noise</title><author>Bian, Tao ; Jiang, Yu ; Jiang, Zhong-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-d15d3c6bfdabe56be0d37457289b8c609b62cf12ff251485153f724ba158865c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive control</topic><topic>Adaptive dynamic programming</topic><topic>adaptive optimal control</topic><topic>Adaptive systems</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Convergence</topic><topic>Dynamic programming</topic><topic>Noise control</topic><topic>Optimal control</topic><topic>Robustness</topic><topic>Stability analysis</topic><topic>Stochastic processes</topic><topic>Stochastic systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bian, Tao</creatorcontrib><creatorcontrib>Jiang, Yu</creatorcontrib><creatorcontrib>Jiang, Zhong-Ping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bian, Tao</au><au>Jiang, Yu</au><au>Jiang, Zhong-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Dynamic Programming for Stochastic Systems With State and Control Dependent Noise</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2016-12</date><risdate>2016</risdate><volume>61</volume><issue>12</issue><spage>4170</spage><epage>4175</epage><pages>4170-4175</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>In this technical note, the adaptive optimal control problem is investigated for a class of continuous-time stochastic systems subject to multiplicative noise. A novel non-model-based optimal control design methodology is employed to iteratively update the control policy on-line by using directly the data of the system state and input. Both adaptive dynamic programming (ADP) and robust ADP algorithms are developed, along with rigorous stability and convergence analysis. The effectiveness of the obtained methods is illustrated by an example arising from biological sensorimotor control.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2016.2550518</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2016-12, Vol.61 (12), p.4170-4175 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAC_2016_2550518 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive control Adaptive dynamic programming adaptive optimal control Adaptive systems Algorithm design and analysis Algorithms Convergence Dynamic programming Noise control Optimal control Robustness Stability analysis Stochastic processes Stochastic systems |
title | Adaptive Dynamic Programming for Stochastic Systems With State and Control Dependent Noise |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T23%3A59%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Dynamic%20Programming%20for%20Stochastic%20Systems%20With%20State%20and%20Control%20Dependent%20Noise&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Bian,%20Tao&rft.date=2016-12&rft.volume=61&rft.issue=12&rft.spage=4170&rft.epage=4175&rft.pages=4170-4175&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2016.2550518&rft_dat=%3Cproquest_RIE%3E1846534842%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1846534842&rft_id=info:pmid/&rft_ieee_id=7447723&rfr_iscdi=true |