Random-Time, State-Dependent Stochastic Drift for Markov Chains and Application to Stochastic Stabilization Over Erasure Channels
It is known that state-dependent, multi-step Lyapunov bounds lead to greatly simplified verification theorems for stability for large classes of Markov chain models. This is one component of the "fluid model" approach to stability of stochastic networks. In this paper we extend the general...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2013-01, Vol.58 (1), p.47-59 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59 |
---|---|
container_issue | 1 |
container_start_page | 47 |
container_title | IEEE transactions on automatic control |
container_volume | 58 |
creator | Yuksel, S. Meyn, S. P. |
description | It is known that state-dependent, multi-step Lyapunov bounds lead to greatly simplified verification theorems for stability for large classes of Markov chain models. This is one component of the "fluid model" approach to stability of stochastic networks. In this paper we extend the general theory to randomized multi-step Lyapunov theory to obtain criteria for stability and steady-state performance bounds, such as finite moments. These results are applied to a remote stabilization problem, in which a controller receives measurements from an erasure channel with limited capacity. Based on the general results in the paper it is shown that stability of the closed loop system is assured provided that the channel capacity is greater than the logarithm of the unstable eigenvalue, plus an additional correction term. The existence of a finite second moment in steady-state is established under additional conditions. |
doi_str_mv | 10.1109/TAC.2012.2204157 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2012_2204157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6215023</ieee_id><sourcerecordid>1283647247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-dc687755f00fc09b3409ddf8a8bce733d3bb88754c88aa2c24c7c85bbb30fc93</originalsourceid><addsrcrecordid>eNpdkU1LJDEQhoOs4Kx6F7wE9uLBHvPZSR-H8WMXFEHn3qTT1RjtSdokI6w3_7kZRpbFU_FSz1MUvAidUDKnlDQXq8Vyzghlc8aIoFLtoRmVUldMMv4DzQihumqYrg_Qz5SeS6yFoDP08WB8H9bVyq3hHD9mk6G6hAl8Dz6XHOyTSdlZfBndkPEQIr4z8SW84eWTcT7houPFNI3OmuyCxzn8b5WDnRvd-253_wYRX0WTNhG2vvcwpiO0P5gxwfHXPESr66vV8nd1e3_zZ7m4rSyv61z1ttZKSTkQMljSdFyQpu8HbXRnQXHe867TWklhtTaGWSasslp2XceL0PBDdLY7O8XwuoGU27VLFsbReAib1FKmeS0UE6qgv76hz2ETfXmuUEJIqZQihSI7ysaQUoShnaJbm_i3paTdVtKWStptJe1XJUU53SkOAP7hNaOSMM4_AXNLiJE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1244557770</pqid></control><display><type>article</type><title>Random-Time, State-Dependent Stochastic Drift for Markov Chains and Application to Stochastic Stabilization Over Erasure Channels</title><source>IEEE Electronic Library (IEL)</source><creator>Yuksel, S. ; Meyn, S. P.</creator><creatorcontrib>Yuksel, S. ; Meyn, S. P.</creatorcontrib><description>It is known that state-dependent, multi-step Lyapunov bounds lead to greatly simplified verification theorems for stability for large classes of Markov chain models. This is one component of the "fluid model" approach to stability of stochastic networks. In this paper we extend the general theory to randomized multi-step Lyapunov theory to obtain criteria for stability and steady-state performance bounds, such as finite moments. These results are applied to a remote stabilization problem, in which a controller receives measurements from an erasure channel with limited capacity. Based on the general results in the paper it is shown that stability of the closed loop system is assured provided that the channel capacity is greater than the logarithm of the unstable eigenvalue, plus an additional correction term. The existence of a finite second moment in steady-state is established under additional conditions.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2012.2204157</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Asymptotic stability ; Channels ; Computational fluid dynamics ; Eigenvalues ; Information theory ; Markov chain Monte-Carlo (MCMC) ; Markov chains ; Markov processes ; Mathematical analysis ; networked control systems ; Noise ; Stability ; Stability criteria ; Stabilization ; Steady-state ; stochastic stability ; Stochasticity ; Studies</subject><ispartof>IEEE transactions on automatic control, 2013-01, Vol.58 (1), p.47-59</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-dc687755f00fc09b3409ddf8a8bce733d3bb88754c88aa2c24c7c85bbb30fc93</citedby><cites>FETCH-LOGICAL-c366t-dc687755f00fc09b3409ddf8a8bce733d3bb88754c88aa2c24c7c85bbb30fc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6215023$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6215023$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yuksel, S.</creatorcontrib><creatorcontrib>Meyn, S. P.</creatorcontrib><title>Random-Time, State-Dependent Stochastic Drift for Markov Chains and Application to Stochastic Stabilization Over Erasure Channels</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>It is known that state-dependent, multi-step Lyapunov bounds lead to greatly simplified verification theorems for stability for large classes of Markov chain models. This is one component of the "fluid model" approach to stability of stochastic networks. In this paper we extend the general theory to randomized multi-step Lyapunov theory to obtain criteria for stability and steady-state performance bounds, such as finite moments. These results are applied to a remote stabilization problem, in which a controller receives measurements from an erasure channel with limited capacity. Based on the general results in the paper it is shown that stability of the closed loop system is assured provided that the channel capacity is greater than the logarithm of the unstable eigenvalue, plus an additional correction term. The existence of a finite second moment in steady-state is established under additional conditions.</description><subject>Algorithms</subject><subject>Asymptotic stability</subject><subject>Channels</subject><subject>Computational fluid dynamics</subject><subject>Eigenvalues</subject><subject>Information theory</subject><subject>Markov chain Monte-Carlo (MCMC)</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>networked control systems</subject><subject>Noise</subject><subject>Stability</subject><subject>Stability criteria</subject><subject>Stabilization</subject><subject>Steady-state</subject><subject>stochastic stability</subject><subject>Stochasticity</subject><subject>Studies</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1LJDEQhoOs4Kx6F7wE9uLBHvPZSR-H8WMXFEHn3qTT1RjtSdokI6w3_7kZRpbFU_FSz1MUvAidUDKnlDQXq8Vyzghlc8aIoFLtoRmVUldMMv4DzQihumqYrg_Qz5SeS6yFoDP08WB8H9bVyq3hHD9mk6G6hAl8Dz6XHOyTSdlZfBndkPEQIr4z8SW84eWTcT7houPFNI3OmuyCxzn8b5WDnRvd-253_wYRX0WTNhG2vvcwpiO0P5gxwfHXPESr66vV8nd1e3_zZ7m4rSyv61z1ttZKSTkQMljSdFyQpu8HbXRnQXHe867TWklhtTaGWSasslp2XceL0PBDdLY7O8XwuoGU27VLFsbReAib1FKmeS0UE6qgv76hz2ETfXmuUEJIqZQihSI7ysaQUoShnaJbm_i3paTdVtKWStptJe1XJUU53SkOAP7hNaOSMM4_AXNLiJE</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Yuksel, S.</creator><creator>Meyn, S. P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201301</creationdate><title>Random-Time, State-Dependent Stochastic Drift for Markov Chains and Application to Stochastic Stabilization Over Erasure Channels</title><author>Yuksel, S. ; Meyn, S. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-dc687755f00fc09b3409ddf8a8bce733d3bb88754c88aa2c24c7c85bbb30fc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Asymptotic stability</topic><topic>Channels</topic><topic>Computational fluid dynamics</topic><topic>Eigenvalues</topic><topic>Information theory</topic><topic>Markov chain Monte-Carlo (MCMC)</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>networked control systems</topic><topic>Noise</topic><topic>Stability</topic><topic>Stability criteria</topic><topic>Stabilization</topic><topic>Steady-state</topic><topic>stochastic stability</topic><topic>Stochasticity</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuksel, S.</creatorcontrib><creatorcontrib>Meyn, S. P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yuksel, S.</au><au>Meyn, S. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random-Time, State-Dependent Stochastic Drift for Markov Chains and Application to Stochastic Stabilization Over Erasure Channels</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2013-01</date><risdate>2013</risdate><volume>58</volume><issue>1</issue><spage>47</spage><epage>59</epage><pages>47-59</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>It is known that state-dependent, multi-step Lyapunov bounds lead to greatly simplified verification theorems for stability for large classes of Markov chain models. This is one component of the "fluid model" approach to stability of stochastic networks. In this paper we extend the general theory to randomized multi-step Lyapunov theory to obtain criteria for stability and steady-state performance bounds, such as finite moments. These results are applied to a remote stabilization problem, in which a controller receives measurements from an erasure channel with limited capacity. Based on the general results in the paper it is shown that stability of the closed loop system is assured provided that the channel capacity is greater than the logarithm of the unstable eigenvalue, plus an additional correction term. The existence of a finite second moment in steady-state is established under additional conditions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2012.2204157</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2013-01, Vol.58 (1), p.47-59 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAC_2012_2204157 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Asymptotic stability Channels Computational fluid dynamics Eigenvalues Information theory Markov chain Monte-Carlo (MCMC) Markov chains Markov processes Mathematical analysis networked control systems Noise Stability Stability criteria Stabilization Steady-state stochastic stability Stochasticity Studies |
title | Random-Time, State-Dependent Stochastic Drift for Markov Chains and Application to Stochastic Stabilization Over Erasure Channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A59%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random-Time,%20State-Dependent%20Stochastic%20Drift%20for%20Markov%20Chains%20and%20Application%20to%20Stochastic%20Stabilization%20Over%20Erasure%20Channels&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Yuksel,%20S.&rft.date=2013-01&rft.volume=58&rft.issue=1&rft.spage=47&rft.epage=59&rft.pages=47-59&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2012.2204157&rft_dat=%3Cproquest_RIE%3E1283647247%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1244557770&rft_id=info:pmid/&rft_ieee_id=6215023&rfr_iscdi=true |