Energy Optimized Topologies for Distributed Averaging in Wireless Sensor Networks
We study the energy efficient implementation of averaging/consensus algorithms in wireless sensor networks. For static, time-invariant topologies we start from the recent result that a bidirectional spanning tree is preferable in terms of convergence time. We formulate the combinatorial optimization...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2011-10, Vol.56 (10), p.2290-2304 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2304 |
---|---|
container_issue | 10 |
container_start_page | 2290 |
container_title | IEEE transactions on automatic control |
container_volume | 56 |
creator | Paschalidis, I. C. Binbin Li |
description | We study the energy efficient implementation of averaging/consensus algorithms in wireless sensor networks. For static, time-invariant topologies we start from the recent result that a bidirectional spanning tree is preferable in terms of convergence time. We formulate the combinatorial optimization problem of selecting such a minimal energy tree as a mixed integer linear programming problem. Since the problem is NP-complete we devise a semi-definite relaxation and establish bounds on the optimal cost. We also develop a series of graph-based algorithms that yield energy efficient bidirectional spanning trees and establish associated bounds on the optimal cost. For dynamic, time-varying topologies we consider a recently proposed load-balancing algorithm which has preferable convergence time properties. We formulate the problem of selecting a minimal energy interconnected network over which we can run the algorithm as a sequential decision problem and cast it into a dynamic programming framework. We first consider the scenario of a large enough time horizon and show that the problem is equivalent to constructing a Minimum Spanning Tree. We then consider the scenario of a limited time horizon and employ a "rollout" heuristic that leverages the spanning tree solution and yields efficient solutions for the original problem. Some of our algorithms can be run in a distributed manner and numerical results establish that they produce near-optimal solutions. |
doi_str_mv | 10.1109/TAC.2011.2163875 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2011_2163875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5977007</ieee_id><sourcerecordid>926337388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-c0b367234141aaa7f06bba0c83a112b98ba37e833db768bf0da665a6d49aed733</originalsourceid><addsrcrecordid>eNpdkEtLw0AURgdRsFb3gpvgxlXqPJJ5LEutDygWseJymCQ3YWqaiTOJUn-9KS0uXF0-7vkul4PQJcETQrC6XU1nE4oJmVDCmRTpERqRNJUxTSk7RiOMiYwVlfwUnYWwHiJPEjJCL_MGfLWNlm1nN_YHimjlWle7ykKISuejOxs6b7O-G1bTL_Cmsk0V2SZ6tx5qCCF6hSYM4DN0385_hHN0Upo6wMVhjtHb_Xw1e4wXy4en2XQR54wnXZzjjHFBWUISYowRJeZZZnAumSGEZkpmhgmQjBWZ4DIrcWE4Tw0vEmWgEIyN0c3-buvdZw-h0xsbcqhr04Drg1aUMyaYlAN5_Y9cu943w3NaKo4xx1wNEN5DuXcheCh16-3G-K0mWO8M68Gw3hnWB8ND5WpfsQDwh6dKCIwF-wXomXdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896006069</pqid></control><display><type>article</type><title>Energy Optimized Topologies for Distributed Averaging in Wireless Sensor Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Paschalidis, I. C. ; Binbin Li</creator><creatorcontrib>Paschalidis, I. C. ; Binbin Li</creatorcontrib><description>We study the energy efficient implementation of averaging/consensus algorithms in wireless sensor networks. For static, time-invariant topologies we start from the recent result that a bidirectional spanning tree is preferable in terms of convergence time. We formulate the combinatorial optimization problem of selecting such a minimal energy tree as a mixed integer linear programming problem. Since the problem is NP-complete we devise a semi-definite relaxation and establish bounds on the optimal cost. We also develop a series of graph-based algorithms that yield energy efficient bidirectional spanning trees and establish associated bounds on the optimal cost. For dynamic, time-varying topologies we consider a recently proposed load-balancing algorithm which has preferable convergence time properties. We formulate the problem of selecting a minimal energy interconnected network over which we can run the algorithm as a sequential decision problem and cast it into a dynamic programming framework. We first consider the scenario of a large enough time horizon and show that the problem is equivalent to constructing a Minimum Spanning Tree. We then consider the scenario of a limited time horizon and employ a "rollout" heuristic that leverages the spanning tree solution and yields efficient solutions for the original problem. Some of our algorithms can be run in a distributed manner and numerical results establish that they produce near-optimal solutions.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2011.2163875</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Combinatorial analysis ; Convergence ; Dynamic programming ; Energy of formation ; Heuristic algorithms ; Mathematical models ; mixed integer linear programming (MILP) ; Network topology ; Networks ; Optimization ; power management ; semi-definite programming (SDP) ; Studies ; Symmetric matrices ; Topology ; topology design ; Trees ; Wireless communication ; Wireless sensor networks ; wireless sensor networks (WSNETs)</subject><ispartof>IEEE transactions on automatic control, 2011-10, Vol.56 (10), p.2290-2304</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-c0b367234141aaa7f06bba0c83a112b98ba37e833db768bf0da665a6d49aed733</citedby><cites>FETCH-LOGICAL-c364t-c0b367234141aaa7f06bba0c83a112b98ba37e833db768bf0da665a6d49aed733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5977007$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5977007$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Paschalidis, I. C.</creatorcontrib><creatorcontrib>Binbin Li</creatorcontrib><title>Energy Optimized Topologies for Distributed Averaging in Wireless Sensor Networks</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We study the energy efficient implementation of averaging/consensus algorithms in wireless sensor networks. For static, time-invariant topologies we start from the recent result that a bidirectional spanning tree is preferable in terms of convergence time. We formulate the combinatorial optimization problem of selecting such a minimal energy tree as a mixed integer linear programming problem. Since the problem is NP-complete we devise a semi-definite relaxation and establish bounds on the optimal cost. We also develop a series of graph-based algorithms that yield energy efficient bidirectional spanning trees and establish associated bounds on the optimal cost. For dynamic, time-varying topologies we consider a recently proposed load-balancing algorithm which has preferable convergence time properties. We formulate the problem of selecting a minimal energy interconnected network over which we can run the algorithm as a sequential decision problem and cast it into a dynamic programming framework. We first consider the scenario of a large enough time horizon and show that the problem is equivalent to constructing a Minimum Spanning Tree. We then consider the scenario of a limited time horizon and employ a "rollout" heuristic that leverages the spanning tree solution and yields efficient solutions for the original problem. Some of our algorithms can be run in a distributed manner and numerical results establish that they produce near-optimal solutions.</description><subject>Algorithms</subject><subject>Combinatorial analysis</subject><subject>Convergence</subject><subject>Dynamic programming</subject><subject>Energy of formation</subject><subject>Heuristic algorithms</subject><subject>Mathematical models</subject><subject>mixed integer linear programming (MILP)</subject><subject>Network topology</subject><subject>Networks</subject><subject>Optimization</subject><subject>power management</subject><subject>semi-definite programming (SDP)</subject><subject>Studies</subject><subject>Symmetric matrices</subject><subject>Topology</subject><subject>topology design</subject><subject>Trees</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><subject>wireless sensor networks (WSNETs)</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AURgdRsFb3gpvgxlXqPJJ5LEutDygWseJymCQ3YWqaiTOJUn-9KS0uXF0-7vkul4PQJcETQrC6XU1nE4oJmVDCmRTpERqRNJUxTSk7RiOMiYwVlfwUnYWwHiJPEjJCL_MGfLWNlm1nN_YHimjlWle7ykKISuejOxs6b7O-G1bTL_Cmsk0V2SZ6tx5qCCF6hSYM4DN0385_hHN0Upo6wMVhjtHb_Xw1e4wXy4en2XQR54wnXZzjjHFBWUISYowRJeZZZnAumSGEZkpmhgmQjBWZ4DIrcWE4Tw0vEmWgEIyN0c3-buvdZw-h0xsbcqhr04Drg1aUMyaYlAN5_Y9cu943w3NaKo4xx1wNEN5DuXcheCh16-3G-K0mWO8M68Gw3hnWB8ND5WpfsQDwh6dKCIwF-wXomXdA</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Paschalidis, I. C.</creator><creator>Binbin Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201110</creationdate><title>Energy Optimized Topologies for Distributed Averaging in Wireless Sensor Networks</title><author>Paschalidis, I. C. ; Binbin Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-c0b367234141aaa7f06bba0c83a112b98ba37e833db768bf0da665a6d49aed733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Combinatorial analysis</topic><topic>Convergence</topic><topic>Dynamic programming</topic><topic>Energy of formation</topic><topic>Heuristic algorithms</topic><topic>Mathematical models</topic><topic>mixed integer linear programming (MILP)</topic><topic>Network topology</topic><topic>Networks</topic><topic>Optimization</topic><topic>power management</topic><topic>semi-definite programming (SDP)</topic><topic>Studies</topic><topic>Symmetric matrices</topic><topic>Topology</topic><topic>topology design</topic><topic>Trees</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><topic>wireless sensor networks (WSNETs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paschalidis, I. C.</creatorcontrib><creatorcontrib>Binbin Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Paschalidis, I. C.</au><au>Binbin Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Optimized Topologies for Distributed Averaging in Wireless Sensor Networks</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2011-10</date><risdate>2011</risdate><volume>56</volume><issue>10</issue><spage>2290</spage><epage>2304</epage><pages>2290-2304</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We study the energy efficient implementation of averaging/consensus algorithms in wireless sensor networks. For static, time-invariant topologies we start from the recent result that a bidirectional spanning tree is preferable in terms of convergence time. We formulate the combinatorial optimization problem of selecting such a minimal energy tree as a mixed integer linear programming problem. Since the problem is NP-complete we devise a semi-definite relaxation and establish bounds on the optimal cost. We also develop a series of graph-based algorithms that yield energy efficient bidirectional spanning trees and establish associated bounds on the optimal cost. For dynamic, time-varying topologies we consider a recently proposed load-balancing algorithm which has preferable convergence time properties. We formulate the problem of selecting a minimal energy interconnected network over which we can run the algorithm as a sequential decision problem and cast it into a dynamic programming framework. We first consider the scenario of a large enough time horizon and show that the problem is equivalent to constructing a Minimum Spanning Tree. We then consider the scenario of a limited time horizon and employ a "rollout" heuristic that leverages the spanning tree solution and yields efficient solutions for the original problem. Some of our algorithms can be run in a distributed manner and numerical results establish that they produce near-optimal solutions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2011.2163875</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2011-10, Vol.56 (10), p.2290-2304 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAC_2011_2163875 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Combinatorial analysis Convergence Dynamic programming Energy of formation Heuristic algorithms Mathematical models mixed integer linear programming (MILP) Network topology Networks Optimization power management semi-definite programming (SDP) Studies Symmetric matrices Topology topology design Trees Wireless communication Wireless sensor networks wireless sensor networks (WSNETs) |
title | Energy Optimized Topologies for Distributed Averaging in Wireless Sensor Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Optimized%20Topologies%20for%20Distributed%20Averaging%20in%20Wireless%20Sensor%20Networks&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Paschalidis,%20I.%20C.&rft.date=2011-10&rft.volume=56&rft.issue=10&rft.spage=2290&rft.epage=2304&rft.pages=2290-2304&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2011.2163875&rft_dat=%3Cproquest_RIE%3E926337388%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896006069&rft_id=info:pmid/&rft_ieee_id=5977007&rfr_iscdi=true |