Energy Optimized Topologies for Distributed Averaging in Wireless Sensor Networks

We study the energy efficient implementation of averaging/consensus algorithms in wireless sensor networks. For static, time-invariant topologies we start from the recent result that a bidirectional spanning tree is preferable in terms of convergence time. We formulate the combinatorial optimization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2011-10, Vol.56 (10), p.2290-2304
Hauptverfasser: Paschalidis, I. C., Binbin Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2304
container_issue 10
container_start_page 2290
container_title IEEE transactions on automatic control
container_volume 56
creator Paschalidis, I. C.
Binbin Li
description We study the energy efficient implementation of averaging/consensus algorithms in wireless sensor networks. For static, time-invariant topologies we start from the recent result that a bidirectional spanning tree is preferable in terms of convergence time. We formulate the combinatorial optimization problem of selecting such a minimal energy tree as a mixed integer linear programming problem. Since the problem is NP-complete we devise a semi-definite relaxation and establish bounds on the optimal cost. We also develop a series of graph-based algorithms that yield energy efficient bidirectional spanning trees and establish associated bounds on the optimal cost. For dynamic, time-varying topologies we consider a recently proposed load-balancing algorithm which has preferable convergence time properties. We formulate the problem of selecting a minimal energy interconnected network over which we can run the algorithm as a sequential decision problem and cast it into a dynamic programming framework. We first consider the scenario of a large enough time horizon and show that the problem is equivalent to constructing a Minimum Spanning Tree. We then consider the scenario of a limited time horizon and employ a "rollout" heuristic that leverages the spanning tree solution and yields efficient solutions for the original problem. Some of our algorithms can be run in a distributed manner and numerical results establish that they produce near-optimal solutions.
doi_str_mv 10.1109/TAC.2011.2163875
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2011_2163875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5977007</ieee_id><sourcerecordid>926337388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-c0b367234141aaa7f06bba0c83a112b98ba37e833db768bf0da665a6d49aed733</originalsourceid><addsrcrecordid>eNpdkEtLw0AURgdRsFb3gpvgxlXqPJJ5LEutDygWseJymCQ3YWqaiTOJUn-9KS0uXF0-7vkul4PQJcETQrC6XU1nE4oJmVDCmRTpERqRNJUxTSk7RiOMiYwVlfwUnYWwHiJPEjJCL_MGfLWNlm1nN_YHimjlWle7ykKISuejOxs6b7O-G1bTL_Cmsk0V2SZ6tx5qCCF6hSYM4DN0385_hHN0Upo6wMVhjtHb_Xw1e4wXy4en2XQR54wnXZzjjHFBWUISYowRJeZZZnAumSGEZkpmhgmQjBWZ4DIrcWE4Tw0vEmWgEIyN0c3-buvdZw-h0xsbcqhr04Drg1aUMyaYlAN5_Y9cu943w3NaKo4xx1wNEN5DuXcheCh16-3G-K0mWO8M68Gw3hnWB8ND5WpfsQDwh6dKCIwF-wXomXdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896006069</pqid></control><display><type>article</type><title>Energy Optimized Topologies for Distributed Averaging in Wireless Sensor Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Paschalidis, I. C. ; Binbin Li</creator><creatorcontrib>Paschalidis, I. C. ; Binbin Li</creatorcontrib><description>We study the energy efficient implementation of averaging/consensus algorithms in wireless sensor networks. For static, time-invariant topologies we start from the recent result that a bidirectional spanning tree is preferable in terms of convergence time. We formulate the combinatorial optimization problem of selecting such a minimal energy tree as a mixed integer linear programming problem. Since the problem is NP-complete we devise a semi-definite relaxation and establish bounds on the optimal cost. We also develop a series of graph-based algorithms that yield energy efficient bidirectional spanning trees and establish associated bounds on the optimal cost. For dynamic, time-varying topologies we consider a recently proposed load-balancing algorithm which has preferable convergence time properties. We formulate the problem of selecting a minimal energy interconnected network over which we can run the algorithm as a sequential decision problem and cast it into a dynamic programming framework. We first consider the scenario of a large enough time horizon and show that the problem is equivalent to constructing a Minimum Spanning Tree. We then consider the scenario of a limited time horizon and employ a "rollout" heuristic that leverages the spanning tree solution and yields efficient solutions for the original problem. Some of our algorithms can be run in a distributed manner and numerical results establish that they produce near-optimal solutions.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2011.2163875</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Combinatorial analysis ; Convergence ; Dynamic programming ; Energy of formation ; Heuristic algorithms ; Mathematical models ; mixed integer linear programming (MILP) ; Network topology ; Networks ; Optimization ; power management ; semi-definite programming (SDP) ; Studies ; Symmetric matrices ; Topology ; topology design ; Trees ; Wireless communication ; Wireless sensor networks ; wireless sensor networks (WSNETs)</subject><ispartof>IEEE transactions on automatic control, 2011-10, Vol.56 (10), p.2290-2304</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-c0b367234141aaa7f06bba0c83a112b98ba37e833db768bf0da665a6d49aed733</citedby><cites>FETCH-LOGICAL-c364t-c0b367234141aaa7f06bba0c83a112b98ba37e833db768bf0da665a6d49aed733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5977007$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5977007$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Paschalidis, I. C.</creatorcontrib><creatorcontrib>Binbin Li</creatorcontrib><title>Energy Optimized Topologies for Distributed Averaging in Wireless Sensor Networks</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We study the energy efficient implementation of averaging/consensus algorithms in wireless sensor networks. For static, time-invariant topologies we start from the recent result that a bidirectional spanning tree is preferable in terms of convergence time. We formulate the combinatorial optimization problem of selecting such a minimal energy tree as a mixed integer linear programming problem. Since the problem is NP-complete we devise a semi-definite relaxation and establish bounds on the optimal cost. We also develop a series of graph-based algorithms that yield energy efficient bidirectional spanning trees and establish associated bounds on the optimal cost. For dynamic, time-varying topologies we consider a recently proposed load-balancing algorithm which has preferable convergence time properties. We formulate the problem of selecting a minimal energy interconnected network over which we can run the algorithm as a sequential decision problem and cast it into a dynamic programming framework. We first consider the scenario of a large enough time horizon and show that the problem is equivalent to constructing a Minimum Spanning Tree. We then consider the scenario of a limited time horizon and employ a "rollout" heuristic that leverages the spanning tree solution and yields efficient solutions for the original problem. Some of our algorithms can be run in a distributed manner and numerical results establish that they produce near-optimal solutions.</description><subject>Algorithms</subject><subject>Combinatorial analysis</subject><subject>Convergence</subject><subject>Dynamic programming</subject><subject>Energy of formation</subject><subject>Heuristic algorithms</subject><subject>Mathematical models</subject><subject>mixed integer linear programming (MILP)</subject><subject>Network topology</subject><subject>Networks</subject><subject>Optimization</subject><subject>power management</subject><subject>semi-definite programming (SDP)</subject><subject>Studies</subject><subject>Symmetric matrices</subject><subject>Topology</subject><subject>topology design</subject><subject>Trees</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><subject>wireless sensor networks (WSNETs)</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AURgdRsFb3gpvgxlXqPJJ5LEutDygWseJymCQ3YWqaiTOJUn-9KS0uXF0-7vkul4PQJcETQrC6XU1nE4oJmVDCmRTpERqRNJUxTSk7RiOMiYwVlfwUnYWwHiJPEjJCL_MGfLWNlm1nN_YHimjlWle7ykKISuejOxs6b7O-G1bTL_Cmsk0V2SZ6tx5qCCF6hSYM4DN0385_hHN0Upo6wMVhjtHb_Xw1e4wXy4en2XQR54wnXZzjjHFBWUISYowRJeZZZnAumSGEZkpmhgmQjBWZ4DIrcWE4Tw0vEmWgEIyN0c3-buvdZw-h0xsbcqhr04Drg1aUMyaYlAN5_Y9cu943w3NaKo4xx1wNEN5DuXcheCh16-3G-K0mWO8M68Gw3hnWB8ND5WpfsQDwh6dKCIwF-wXomXdA</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Paschalidis, I. C.</creator><creator>Binbin Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201110</creationdate><title>Energy Optimized Topologies for Distributed Averaging in Wireless Sensor Networks</title><author>Paschalidis, I. C. ; Binbin Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-c0b367234141aaa7f06bba0c83a112b98ba37e833db768bf0da665a6d49aed733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Combinatorial analysis</topic><topic>Convergence</topic><topic>Dynamic programming</topic><topic>Energy of formation</topic><topic>Heuristic algorithms</topic><topic>Mathematical models</topic><topic>mixed integer linear programming (MILP)</topic><topic>Network topology</topic><topic>Networks</topic><topic>Optimization</topic><topic>power management</topic><topic>semi-definite programming (SDP)</topic><topic>Studies</topic><topic>Symmetric matrices</topic><topic>Topology</topic><topic>topology design</topic><topic>Trees</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><topic>wireless sensor networks (WSNETs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paschalidis, I. C.</creatorcontrib><creatorcontrib>Binbin Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Paschalidis, I. C.</au><au>Binbin Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Optimized Topologies for Distributed Averaging in Wireless Sensor Networks</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2011-10</date><risdate>2011</risdate><volume>56</volume><issue>10</issue><spage>2290</spage><epage>2304</epage><pages>2290-2304</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We study the energy efficient implementation of averaging/consensus algorithms in wireless sensor networks. For static, time-invariant topologies we start from the recent result that a bidirectional spanning tree is preferable in terms of convergence time. We formulate the combinatorial optimization problem of selecting such a minimal energy tree as a mixed integer linear programming problem. Since the problem is NP-complete we devise a semi-definite relaxation and establish bounds on the optimal cost. We also develop a series of graph-based algorithms that yield energy efficient bidirectional spanning trees and establish associated bounds on the optimal cost. For dynamic, time-varying topologies we consider a recently proposed load-balancing algorithm which has preferable convergence time properties. We formulate the problem of selecting a minimal energy interconnected network over which we can run the algorithm as a sequential decision problem and cast it into a dynamic programming framework. We first consider the scenario of a large enough time horizon and show that the problem is equivalent to constructing a Minimum Spanning Tree. We then consider the scenario of a limited time horizon and employ a "rollout" heuristic that leverages the spanning tree solution and yields efficient solutions for the original problem. Some of our algorithms can be run in a distributed manner and numerical results establish that they produce near-optimal solutions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2011.2163875</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2011-10, Vol.56 (10), p.2290-2304
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_2011_2163875
source IEEE Electronic Library (IEL)
subjects Algorithms
Combinatorial analysis
Convergence
Dynamic programming
Energy of formation
Heuristic algorithms
Mathematical models
mixed integer linear programming (MILP)
Network topology
Networks
Optimization
power management
semi-definite programming (SDP)
Studies
Symmetric matrices
Topology
topology design
Trees
Wireless communication
Wireless sensor networks
wireless sensor networks (WSNETs)
title Energy Optimized Topologies for Distributed Averaging in Wireless Sensor Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Optimized%20Topologies%20for%20Distributed%20Averaging%20in%20Wireless%20Sensor%20Networks&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Paschalidis,%20I.%20C.&rft.date=2011-10&rft.volume=56&rft.issue=10&rft.spage=2290&rft.epage=2304&rft.pages=2290-2304&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2011.2163875&rft_dat=%3Cproquest_RIE%3E926337388%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896006069&rft_id=info:pmid/&rft_ieee_id=5977007&rfr_iscdi=true