Stability Analysis for Continuous-Time Positive Systems With Time-Varying Delays

This note addresses the stability problem of continuous-time positive systems with time-varying delays. It is shown that such a system is asymptotically stable for any continuous and bounded delay if and only if the sum of all the system matrices is a Hurwitz matrix. The result is a time-varying ver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2010-04, Vol.55 (4), p.1024-1028
Hauptverfasser: Liu, Xingwen, Yu, Wensheng, Wang, Long
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1028
container_issue 4
container_start_page 1024
container_title IEEE transactions on automatic control
container_volume 55
creator Liu, Xingwen
Yu, Wensheng
Wang, Long
description This note addresses the stability problem of continuous-time positive systems with time-varying delays. It is shown that such a system is asymptotically stable for any continuous and bounded delay if and only if the sum of all the system matrices is a Hurwitz matrix. The result is a time-varying version of the widely-known asymptotic stability criterion for constant-delay positive systems. A numerical example illustrates the correctness of our result.
doi_str_mv 10.1109/TAC.2010.2041982
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2010_2041982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5404378</ieee_id><sourcerecordid>2716624501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-d0a6e09e0ee5a4a0dd12e26ffc46d592c9e98637fd5599ee7badf97d7a1ec89a3</originalsourceid><addsrcrecordid>eNpdkM1Lw0AQxRdRsFbvgpeAiKfU3c1-Hkv8hIKFVj2GbTLRLfmomVTIf--WFg-ehsf83jDvEXLJ6IQxau-W03TCaVCcCmYNPyIjJqWJueTJMRlRykxsuVGn5AxxHaQSgo3IfNG7la98P0TTxlUDeozKtovStul9s223GC99DdG8Rd_7H4gWA_ZQY_Th-69ot4rfXTf45jO6h8oNeE5OSlchXBzmmLw9PizT53j2-vSSTmdxnsikjwvqFFALFEA64WhRMA5clWUuVCEtzy1YoxJdFlJaC6BXriitLrRjkBvrkjG53d_ddO33FrDPao85VJVrIHydaZlorhRngbz-R67bbRfCYsYo10xxKWyg6J7KuxaxgzLbdL4O0QKU7RrOQsPZruHs0HCw3BwOO8xdVXauyT3--TjX3Bix4672nAeAv7UUVCTaJL8H84RZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027162549</pqid></control><display><type>article</type><title>Stability Analysis for Continuous-Time Positive Systems With Time-Varying Delays</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Xingwen ; Yu, Wensheng ; Wang, Long</creator><creatorcontrib>Liu, Xingwen ; Yu, Wensheng ; Wang, Long</creatorcontrib><description>This note addresses the stability problem of continuous-time positive systems with time-varying delays. It is shown that such a system is asymptotically stable for any continuous and bounded delay if and only if the sum of all the system matrices is a Hurwitz matrix. The result is a time-varying version of the widely-known asymptotic stability criterion for constant-delay positive systems. A numerical example illustrates the correctness of our result.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2010.2041982</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Asymptotic properties ; Asymptotic stability ; Automatic control ; Automation ; Computer science; control theory; systems ; Control system analysis ; Control theory. Systems ; Criteria ; Delay ; Delay systems ; Educational programs ; Exact sciences and technology ; Laboratories ; linear copositive Lyapunov functional ; Lyapunov method ; Mathematical analysis ; Matrices ; positive system ; Stability ; Stability analysis ; Stability criteria ; System theory ; Time varying systems ; time-varying delays</subject><ispartof>IEEE transactions on automatic control, 2010-04, Vol.55 (4), p.1024-1028</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-d0a6e09e0ee5a4a0dd12e26ffc46d592c9e98637fd5599ee7badf97d7a1ec89a3</citedby><cites>FETCH-LOGICAL-c353t-d0a6e09e0ee5a4a0dd12e26ffc46d592c9e98637fd5599ee7badf97d7a1ec89a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5404378$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5404378$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22728842$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xingwen</creatorcontrib><creatorcontrib>Yu, Wensheng</creatorcontrib><creatorcontrib>Wang, Long</creatorcontrib><title>Stability Analysis for Continuous-Time Positive Systems With Time-Varying Delays</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This note addresses the stability problem of continuous-time positive systems with time-varying delays. It is shown that such a system is asymptotically stable for any continuous and bounded delay if and only if the sum of all the system matrices is a Hurwitz matrix. The result is a time-varying version of the widely-known asymptotic stability criterion for constant-delay positive systems. A numerical example illustrates the correctness of our result.</description><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Asymptotic stability</subject><subject>Automatic control</subject><subject>Automation</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Criteria</subject><subject>Delay</subject><subject>Delay systems</subject><subject>Educational programs</subject><subject>Exact sciences and technology</subject><subject>Laboratories</subject><subject>linear copositive Lyapunov functional</subject><subject>Lyapunov method</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>positive system</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>System theory</subject><subject>Time varying systems</subject><subject>time-varying delays</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1Lw0AQxRdRsFbvgpeAiKfU3c1-Hkv8hIKFVj2GbTLRLfmomVTIf--WFg-ehsf83jDvEXLJ6IQxau-W03TCaVCcCmYNPyIjJqWJueTJMRlRykxsuVGn5AxxHaQSgo3IfNG7la98P0TTxlUDeozKtovStul9s223GC99DdG8Rd_7H4gWA_ZQY_Th-69ot4rfXTf45jO6h8oNeE5OSlchXBzmmLw9PizT53j2-vSSTmdxnsikjwvqFFALFEA64WhRMA5clWUuVCEtzy1YoxJdFlJaC6BXriitLrRjkBvrkjG53d_ddO33FrDPao85VJVrIHydaZlorhRngbz-R67bbRfCYsYo10xxKWyg6J7KuxaxgzLbdL4O0QKU7RrOQsPZruHs0HCw3BwOO8xdVXauyT3--TjX3Bix4672nAeAv7UUVCTaJL8H84RZ</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Liu, Xingwen</creator><creator>Yu, Wensheng</creator><creator>Wang, Long</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20100401</creationdate><title>Stability Analysis for Continuous-Time Positive Systems With Time-Varying Delays</title><author>Liu, Xingwen ; Yu, Wensheng ; Wang, Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-d0a6e09e0ee5a4a0dd12e26ffc46d592c9e98637fd5599ee7badf97d7a1ec89a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Asymptotic stability</topic><topic>Automatic control</topic><topic>Automation</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Criteria</topic><topic>Delay</topic><topic>Delay systems</topic><topic>Educational programs</topic><topic>Exact sciences and technology</topic><topic>Laboratories</topic><topic>linear copositive Lyapunov functional</topic><topic>Lyapunov method</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>positive system</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>System theory</topic><topic>Time varying systems</topic><topic>time-varying delays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xingwen</creatorcontrib><creatorcontrib>Yu, Wensheng</creatorcontrib><creatorcontrib>Wang, Long</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Xingwen</au><au>Yu, Wensheng</au><au>Wang, Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability Analysis for Continuous-Time Positive Systems With Time-Varying Delays</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>55</volume><issue>4</issue><spage>1024</spage><epage>1028</epage><pages>1024-1028</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This note addresses the stability problem of continuous-time positive systems with time-varying delays. It is shown that such a system is asymptotically stable for any continuous and bounded delay if and only if the sum of all the system matrices is a Hurwitz matrix. The result is a time-varying version of the widely-known asymptotic stability criterion for constant-delay positive systems. A numerical example illustrates the correctness of our result.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2010.2041982</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2010-04, Vol.55 (4), p.1024-1028
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_2010_2041982
source IEEE Electronic Library (IEL)
subjects Applied sciences
Asymptotic properties
Asymptotic stability
Automatic control
Automation
Computer science
control theory
systems
Control system analysis
Control theory. Systems
Criteria
Delay
Delay systems
Educational programs
Exact sciences and technology
Laboratories
linear copositive Lyapunov functional
Lyapunov method
Mathematical analysis
Matrices
positive system
Stability
Stability analysis
Stability criteria
System theory
Time varying systems
time-varying delays
title Stability Analysis for Continuous-Time Positive Systems With Time-Varying Delays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A55%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20Analysis%20for%20Continuous-Time%20Positive%20Systems%20With%20Time-Varying%20Delays&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Liu,%20Xingwen&rft.date=2010-04-01&rft.volume=55&rft.issue=4&rft.spage=1024&rft.epage=1028&rft.pages=1024-1028&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2010.2041982&rft_dat=%3Cproquest_RIE%3E2716624501%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027162549&rft_id=info:pmid/&rft_ieee_id=5404378&rfr_iscdi=true