Stability Analysis for Continuous-Time Positive Systems With Time-Varying Delays
This note addresses the stability problem of continuous-time positive systems with time-varying delays. It is shown that such a system is asymptotically stable for any continuous and bounded delay if and only if the sum of all the system matrices is a Hurwitz matrix. The result is a time-varying ver...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2010-04, Vol.55 (4), p.1024-1028 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1028 |
---|---|
container_issue | 4 |
container_start_page | 1024 |
container_title | IEEE transactions on automatic control |
container_volume | 55 |
creator | Liu, Xingwen Yu, Wensheng Wang, Long |
description | This note addresses the stability problem of continuous-time positive systems with time-varying delays. It is shown that such a system is asymptotically stable for any continuous and bounded delay if and only if the sum of all the system matrices is a Hurwitz matrix. The result is a time-varying version of the widely-known asymptotic stability criterion for constant-delay positive systems. A numerical example illustrates the correctness of our result. |
doi_str_mv | 10.1109/TAC.2010.2041982 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2010_2041982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5404378</ieee_id><sourcerecordid>2716624501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-d0a6e09e0ee5a4a0dd12e26ffc46d592c9e98637fd5599ee7badf97d7a1ec89a3</originalsourceid><addsrcrecordid>eNpdkM1Lw0AQxRdRsFbvgpeAiKfU3c1-Hkv8hIKFVj2GbTLRLfmomVTIf--WFg-ehsf83jDvEXLJ6IQxau-W03TCaVCcCmYNPyIjJqWJueTJMRlRykxsuVGn5AxxHaQSgo3IfNG7la98P0TTxlUDeozKtovStul9s223GC99DdG8Rd_7H4gWA_ZQY_Th-69ot4rfXTf45jO6h8oNeE5OSlchXBzmmLw9PizT53j2-vSSTmdxnsikjwvqFFALFEA64WhRMA5clWUuVCEtzy1YoxJdFlJaC6BXriitLrRjkBvrkjG53d_ddO33FrDPao85VJVrIHydaZlorhRngbz-R67bbRfCYsYo10xxKWyg6J7KuxaxgzLbdL4O0QKU7RrOQsPZruHs0HCw3BwOO8xdVXauyT3--TjX3Bix4672nAeAv7UUVCTaJL8H84RZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027162549</pqid></control><display><type>article</type><title>Stability Analysis for Continuous-Time Positive Systems With Time-Varying Delays</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Xingwen ; Yu, Wensheng ; Wang, Long</creator><creatorcontrib>Liu, Xingwen ; Yu, Wensheng ; Wang, Long</creatorcontrib><description>This note addresses the stability problem of continuous-time positive systems with time-varying delays. It is shown that such a system is asymptotically stable for any continuous and bounded delay if and only if the sum of all the system matrices is a Hurwitz matrix. The result is a time-varying version of the widely-known asymptotic stability criterion for constant-delay positive systems. A numerical example illustrates the correctness of our result.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2010.2041982</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Asymptotic properties ; Asymptotic stability ; Automatic control ; Automation ; Computer science; control theory; systems ; Control system analysis ; Control theory. Systems ; Criteria ; Delay ; Delay systems ; Educational programs ; Exact sciences and technology ; Laboratories ; linear copositive Lyapunov functional ; Lyapunov method ; Mathematical analysis ; Matrices ; positive system ; Stability ; Stability analysis ; Stability criteria ; System theory ; Time varying systems ; time-varying delays</subject><ispartof>IEEE transactions on automatic control, 2010-04, Vol.55 (4), p.1024-1028</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-d0a6e09e0ee5a4a0dd12e26ffc46d592c9e98637fd5599ee7badf97d7a1ec89a3</citedby><cites>FETCH-LOGICAL-c353t-d0a6e09e0ee5a4a0dd12e26ffc46d592c9e98637fd5599ee7badf97d7a1ec89a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5404378$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5404378$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22728842$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xingwen</creatorcontrib><creatorcontrib>Yu, Wensheng</creatorcontrib><creatorcontrib>Wang, Long</creatorcontrib><title>Stability Analysis for Continuous-Time Positive Systems With Time-Varying Delays</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This note addresses the stability problem of continuous-time positive systems with time-varying delays. It is shown that such a system is asymptotically stable for any continuous and bounded delay if and only if the sum of all the system matrices is a Hurwitz matrix. The result is a time-varying version of the widely-known asymptotic stability criterion for constant-delay positive systems. A numerical example illustrates the correctness of our result.</description><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Asymptotic stability</subject><subject>Automatic control</subject><subject>Automation</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Criteria</subject><subject>Delay</subject><subject>Delay systems</subject><subject>Educational programs</subject><subject>Exact sciences and technology</subject><subject>Laboratories</subject><subject>linear copositive Lyapunov functional</subject><subject>Lyapunov method</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>positive system</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>System theory</subject><subject>Time varying systems</subject><subject>time-varying delays</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1Lw0AQxRdRsFbvgpeAiKfU3c1-Hkv8hIKFVj2GbTLRLfmomVTIf--WFg-ehsf83jDvEXLJ6IQxau-W03TCaVCcCmYNPyIjJqWJueTJMRlRykxsuVGn5AxxHaQSgo3IfNG7la98P0TTxlUDeozKtovStul9s223GC99DdG8Rd_7H4gWA_ZQY_Th-69ot4rfXTf45jO6h8oNeE5OSlchXBzmmLw9PizT53j2-vSSTmdxnsikjwvqFFALFEA64WhRMA5clWUuVCEtzy1YoxJdFlJaC6BXriitLrRjkBvrkjG53d_ddO33FrDPao85VJVrIHydaZlorhRngbz-R67bbRfCYsYo10xxKWyg6J7KuxaxgzLbdL4O0QKU7RrOQsPZruHs0HCw3BwOO8xdVXauyT3--TjX3Bix4672nAeAv7UUVCTaJL8H84RZ</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Liu, Xingwen</creator><creator>Yu, Wensheng</creator><creator>Wang, Long</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20100401</creationdate><title>Stability Analysis for Continuous-Time Positive Systems With Time-Varying Delays</title><author>Liu, Xingwen ; Yu, Wensheng ; Wang, Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-d0a6e09e0ee5a4a0dd12e26ffc46d592c9e98637fd5599ee7badf97d7a1ec89a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Asymptotic stability</topic><topic>Automatic control</topic><topic>Automation</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Criteria</topic><topic>Delay</topic><topic>Delay systems</topic><topic>Educational programs</topic><topic>Exact sciences and technology</topic><topic>Laboratories</topic><topic>linear copositive Lyapunov functional</topic><topic>Lyapunov method</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>positive system</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>System theory</topic><topic>Time varying systems</topic><topic>time-varying delays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xingwen</creatorcontrib><creatorcontrib>Yu, Wensheng</creatorcontrib><creatorcontrib>Wang, Long</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Xingwen</au><au>Yu, Wensheng</au><au>Wang, Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability Analysis for Continuous-Time Positive Systems With Time-Varying Delays</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>55</volume><issue>4</issue><spage>1024</spage><epage>1028</epage><pages>1024-1028</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This note addresses the stability problem of continuous-time positive systems with time-varying delays. It is shown that such a system is asymptotically stable for any continuous and bounded delay if and only if the sum of all the system matrices is a Hurwitz matrix. The result is a time-varying version of the widely-known asymptotic stability criterion for constant-delay positive systems. A numerical example illustrates the correctness of our result.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2010.2041982</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2010-04, Vol.55 (4), p.1024-1028 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAC_2010_2041982 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Asymptotic properties Asymptotic stability Automatic control Automation Computer science control theory systems Control system analysis Control theory. Systems Criteria Delay Delay systems Educational programs Exact sciences and technology Laboratories linear copositive Lyapunov functional Lyapunov method Mathematical analysis Matrices positive system Stability Stability analysis Stability criteria System theory Time varying systems time-varying delays |
title | Stability Analysis for Continuous-Time Positive Systems With Time-Varying Delays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A55%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20Analysis%20for%20Continuous-Time%20Positive%20Systems%20With%20Time-Varying%20Delays&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Liu,%20Xingwen&rft.date=2010-04-01&rft.volume=55&rft.issue=4&rft.spage=1024&rft.epage=1028&rft.pages=1024-1028&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2010.2041982&rft_dat=%3Cproquest_RIE%3E2716624501%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027162549&rft_id=info:pmid/&rft_ieee_id=5404378&rfr_iscdi=true |