Exponentially Stable Nonlinear Systems Have Polynomial Lyapunov Functions on Bounded Regions

This paper presents a proof that existence of a polynomial Lyapunov function is necessary and sufficient for exponential stability of a sufficiently smooth nonlinear vector field on a bounded set. The main result states that if there exists an n -times continuously differentiable Lyapunov function w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2009-05, Vol.54 (5), p.979-987
1. Verfasser: Peet, M.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 987
container_issue 5
container_start_page 979
container_title IEEE transactions on automatic control
container_volume 54
creator Peet, M.M.
description This paper presents a proof that existence of a polynomial Lyapunov function is necessary and sufficient for exponential stability of a sufficiently smooth nonlinear vector field on a bounded set. The main result states that if there exists an n -times continuously differentiable Lyapunov function which proves exponential stability on a bounded subset of Rn, then there exists a polynomial Lyapunov function which proves exponential stability on the same region. Such a continuous Lyapunov function will exist if, for example, the vector field is at least n -times continuously differentiable. The proof is based on a generalization of the Weierstrass approximation theorem to differentiable functions in several variables. Specifically, polynomials can be used to approximate a differentiable function, using the Sobolev norm W 1,infin to any desired accuracy. This approximation result is combined with the second-order Taylor series expansion to show that polynomial Lyapunov functions can approximate continuous Lyapunov functions arbitrarily well on bounded sets. The investigation is motivated by the use of polynomial optimization algorithms to construct polynomial Lyapunov functions.
doi_str_mv 10.1109/TAC.2009.2017116
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2009_2017116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4908942</ieee_id><sourcerecordid>2316712921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-b6e33e76f514c009969f209106500f3748fe2def3b7567171f90bd1839efc0383</originalsourceid><addsrcrecordid>eNpdkM1Lw0AQxRdRsFbvgpfFi6fU_Ug2u8daWisUFVtvwpKks5KS7sZsUsx_74aKBy8zzPB7w7yH0DUlE0qJut9MZxNGiAqFppSKEzSiSSIjljB-ikaEUBkpJsU5uvB-F0YRx3SEPubftbNg2zKrqh6v2yyvAD87W5UWsgave9_C3uNldgD86qreun1A8arP6s66A150tmhLZz12Fj-4zm5hi9_gc1hdojOTVR6ufvsYvS_mm9kyWr08Ps2mq6jgIm6jXADnkAqT0LgIFpRQhhFFiUgIMTyNpQG2BcPzNBFpcGcUybdUcgWmIFzyMbo73q0b99WBb_W-9AVUVWbBdV5LqbiksVCBvP1H7lzX2PCcloIyxRI1QOQIFY3zvgGj66bcZ02vKdFD2DqErYew9W_YQXJzlJQA8IfHikgVM_4DUKt6RQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861292599</pqid></control><display><type>article</type><title>Exponentially Stable Nonlinear Systems Have Polynomial Lyapunov Functions on Bounded Regions</title><source>IEEE Xplore (Online service)</source><creator>Peet, M.M.</creator><creatorcontrib>Peet, M.M.</creatorcontrib><description>This paper presents a proof that existence of a polynomial Lyapunov function is necessary and sufficient for exponential stability of a sufficiently smooth nonlinear vector field on a bounded set. The main result states that if there exists an n -times continuously differentiable Lyapunov function which proves exponential stability on a bounded subset of Rn, then there exists a polynomial Lyapunov function which proves exponential stability on the same region. Such a continuous Lyapunov function will exist if, for example, the vector field is at least n -times continuously differentiable. The proof is based on a generalization of the Weierstrass approximation theorem to differentiable functions in several variables. Specifically, polynomials can be used to approximate a differentiable function, using the Sobolev norm W 1,infin to any desired accuracy. This approximation result is combined with the second-order Taylor series expansion to show that polynomial Lyapunov functions can approximate continuous Lyapunov functions arbitrarily well on bounded sets. The investigation is motivated by the use of polynomial optimization algorithms to construct polynomial Lyapunov functions.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2009.2017116</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerodynamics ; Approximation ; Approximation methods ; Control systems ; Delay systems ; Dynamical systems ; Exponential stability ; Lyapunov functions ; Lyapunov method ; Lyapunov methods ; Mathematical analysis ; Motion control ; Nonlinear systems ; Norms ; polynomial approximation ; Polynomials ; Proving ; Stability ; Studies ; sum of squares ; Taylor series ; Vectors (mathematics)</subject><ispartof>IEEE transactions on automatic control, 2009-05, Vol.54 (5), p.979-987</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-b6e33e76f514c009969f209106500f3748fe2def3b7567171f90bd1839efc0383</citedby><cites>FETCH-LOGICAL-c364t-b6e33e76f514c009969f209106500f3748fe2def3b7567171f90bd1839efc0383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4908942$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4908942$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Peet, M.M.</creatorcontrib><title>Exponentially Stable Nonlinear Systems Have Polynomial Lyapunov Functions on Bounded Regions</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This paper presents a proof that existence of a polynomial Lyapunov function is necessary and sufficient for exponential stability of a sufficiently smooth nonlinear vector field on a bounded set. The main result states that if there exists an n -times continuously differentiable Lyapunov function which proves exponential stability on a bounded subset of Rn, then there exists a polynomial Lyapunov function which proves exponential stability on the same region. Such a continuous Lyapunov function will exist if, for example, the vector field is at least n -times continuously differentiable. The proof is based on a generalization of the Weierstrass approximation theorem to differentiable functions in several variables. Specifically, polynomials can be used to approximate a differentiable function, using the Sobolev norm W 1,infin to any desired accuracy. This approximation result is combined with the second-order Taylor series expansion to show that polynomial Lyapunov functions can approximate continuous Lyapunov functions arbitrarily well on bounded sets. The investigation is motivated by the use of polynomial optimization algorithms to construct polynomial Lyapunov functions.</description><subject>Aerodynamics</subject><subject>Approximation</subject><subject>Approximation methods</subject><subject>Control systems</subject><subject>Delay systems</subject><subject>Dynamical systems</subject><subject>Exponential stability</subject><subject>Lyapunov functions</subject><subject>Lyapunov method</subject><subject>Lyapunov methods</subject><subject>Mathematical analysis</subject><subject>Motion control</subject><subject>Nonlinear systems</subject><subject>Norms</subject><subject>polynomial approximation</subject><subject>Polynomials</subject><subject>Proving</subject><subject>Stability</subject><subject>Studies</subject><subject>sum of squares</subject><subject>Taylor series</subject><subject>Vectors (mathematics)</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1Lw0AQxRdRsFbvgpfFi6fU_Ug2u8daWisUFVtvwpKks5KS7sZsUsx_74aKBy8zzPB7w7yH0DUlE0qJut9MZxNGiAqFppSKEzSiSSIjljB-ikaEUBkpJsU5uvB-F0YRx3SEPubftbNg2zKrqh6v2yyvAD87W5UWsgave9_C3uNldgD86qreun1A8arP6s66A150tmhLZz12Fj-4zm5hi9_gc1hdojOTVR6ufvsYvS_mm9kyWr08Ps2mq6jgIm6jXADnkAqT0LgIFpRQhhFFiUgIMTyNpQG2BcPzNBFpcGcUybdUcgWmIFzyMbo73q0b99WBb_W-9AVUVWbBdV5LqbiksVCBvP1H7lzX2PCcloIyxRI1QOQIFY3zvgGj66bcZ02vKdFD2DqErYew9W_YQXJzlJQA8IfHikgVM_4DUKt6RQ</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Peet, M.M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20090501</creationdate><title>Exponentially Stable Nonlinear Systems Have Polynomial Lyapunov Functions on Bounded Regions</title><author>Peet, M.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-b6e33e76f514c009969f209106500f3748fe2def3b7567171f90bd1839efc0383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aerodynamics</topic><topic>Approximation</topic><topic>Approximation methods</topic><topic>Control systems</topic><topic>Delay systems</topic><topic>Dynamical systems</topic><topic>Exponential stability</topic><topic>Lyapunov functions</topic><topic>Lyapunov method</topic><topic>Lyapunov methods</topic><topic>Mathematical analysis</topic><topic>Motion control</topic><topic>Nonlinear systems</topic><topic>Norms</topic><topic>polynomial approximation</topic><topic>Polynomials</topic><topic>Proving</topic><topic>Stability</topic><topic>Studies</topic><topic>sum of squares</topic><topic>Taylor series</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peet, M.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peet, M.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponentially Stable Nonlinear Systems Have Polynomial Lyapunov Functions on Bounded Regions</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2009-05-01</date><risdate>2009</risdate><volume>54</volume><issue>5</issue><spage>979</spage><epage>987</epage><pages>979-987</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This paper presents a proof that existence of a polynomial Lyapunov function is necessary and sufficient for exponential stability of a sufficiently smooth nonlinear vector field on a bounded set. The main result states that if there exists an n -times continuously differentiable Lyapunov function which proves exponential stability on a bounded subset of Rn, then there exists a polynomial Lyapunov function which proves exponential stability on the same region. Such a continuous Lyapunov function will exist if, for example, the vector field is at least n -times continuously differentiable. The proof is based on a generalization of the Weierstrass approximation theorem to differentiable functions in several variables. Specifically, polynomials can be used to approximate a differentiable function, using the Sobolev norm W 1,infin to any desired accuracy. This approximation result is combined with the second-order Taylor series expansion to show that polynomial Lyapunov functions can approximate continuous Lyapunov functions arbitrarily well on bounded sets. The investigation is motivated by the use of polynomial optimization algorithms to construct polynomial Lyapunov functions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2009.2017116</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2009-05, Vol.54 (5), p.979-987
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_2009_2017116
source IEEE Xplore (Online service)
subjects Aerodynamics
Approximation
Approximation methods
Control systems
Delay systems
Dynamical systems
Exponential stability
Lyapunov functions
Lyapunov method
Lyapunov methods
Mathematical analysis
Motion control
Nonlinear systems
Norms
polynomial approximation
Polynomials
Proving
Stability
Studies
sum of squares
Taylor series
Vectors (mathematics)
title Exponentially Stable Nonlinear Systems Have Polynomial Lyapunov Functions on Bounded Regions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A00%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponentially%20Stable%20Nonlinear%20Systems%20Have%20Polynomial%20Lyapunov%20Functions%20on%20Bounded%20Regions&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Peet,%20M.M.&rft.date=2009-05-01&rft.volume=54&rft.issue=5&rft.spage=979&rft.epage=987&rft.pages=979-987&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2009.2017116&rft_dat=%3Cproquest_RIE%3E2316712921%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861292599&rft_id=info:pmid/&rft_ieee_id=4908942&rfr_iscdi=true