Exponentially Stable Nonlinear Systems Have Polynomial Lyapunov Functions on Bounded Regions
This paper presents a proof that existence of a polynomial Lyapunov function is necessary and sufficient for exponential stability of a sufficiently smooth nonlinear vector field on a bounded set. The main result states that if there exists an n -times continuously differentiable Lyapunov function w...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2009-05, Vol.54 (5), p.979-987 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 987 |
---|---|
container_issue | 5 |
container_start_page | 979 |
container_title | IEEE transactions on automatic control |
container_volume | 54 |
creator | Peet, M.M. |
description | This paper presents a proof that existence of a polynomial Lyapunov function is necessary and sufficient for exponential stability of a sufficiently smooth nonlinear vector field on a bounded set. The main result states that if there exists an n -times continuously differentiable Lyapunov function which proves exponential stability on a bounded subset of Rn, then there exists a polynomial Lyapunov function which proves exponential stability on the same region. Such a continuous Lyapunov function will exist if, for example, the vector field is at least n -times continuously differentiable. The proof is based on a generalization of the Weierstrass approximation theorem to differentiable functions in several variables. Specifically, polynomials can be used to approximate a differentiable function, using the Sobolev norm W 1,infin to any desired accuracy. This approximation result is combined with the second-order Taylor series expansion to show that polynomial Lyapunov functions can approximate continuous Lyapunov functions arbitrarily well on bounded sets. The investigation is motivated by the use of polynomial optimization algorithms to construct polynomial Lyapunov functions. |
doi_str_mv | 10.1109/TAC.2009.2017116 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_2009_2017116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4908942</ieee_id><sourcerecordid>2316712921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-b6e33e76f514c009969f209106500f3748fe2def3b7567171f90bd1839efc0383</originalsourceid><addsrcrecordid>eNpdkM1Lw0AQxRdRsFbvgpfFi6fU_Ug2u8daWisUFVtvwpKks5KS7sZsUsx_74aKBy8zzPB7w7yH0DUlE0qJut9MZxNGiAqFppSKEzSiSSIjljB-ikaEUBkpJsU5uvB-F0YRx3SEPubftbNg2zKrqh6v2yyvAD87W5UWsgave9_C3uNldgD86qreun1A8arP6s66A150tmhLZz12Fj-4zm5hi9_gc1hdojOTVR6ufvsYvS_mm9kyWr08Ps2mq6jgIm6jXADnkAqT0LgIFpRQhhFFiUgIMTyNpQG2BcPzNBFpcGcUybdUcgWmIFzyMbo73q0b99WBb_W-9AVUVWbBdV5LqbiksVCBvP1H7lzX2PCcloIyxRI1QOQIFY3zvgGj66bcZ02vKdFD2DqErYew9W_YQXJzlJQA8IfHikgVM_4DUKt6RQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861292599</pqid></control><display><type>article</type><title>Exponentially Stable Nonlinear Systems Have Polynomial Lyapunov Functions on Bounded Regions</title><source>IEEE Xplore (Online service)</source><creator>Peet, M.M.</creator><creatorcontrib>Peet, M.M.</creatorcontrib><description>This paper presents a proof that existence of a polynomial Lyapunov function is necessary and sufficient for exponential stability of a sufficiently smooth nonlinear vector field on a bounded set. The main result states that if there exists an n -times continuously differentiable Lyapunov function which proves exponential stability on a bounded subset of Rn, then there exists a polynomial Lyapunov function which proves exponential stability on the same region. Such a continuous Lyapunov function will exist if, for example, the vector field is at least n -times continuously differentiable. The proof is based on a generalization of the Weierstrass approximation theorem to differentiable functions in several variables. Specifically, polynomials can be used to approximate a differentiable function, using the Sobolev norm W 1,infin to any desired accuracy. This approximation result is combined with the second-order Taylor series expansion to show that polynomial Lyapunov functions can approximate continuous Lyapunov functions arbitrarily well on bounded sets. The investigation is motivated by the use of polynomial optimization algorithms to construct polynomial Lyapunov functions.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2009.2017116</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerodynamics ; Approximation ; Approximation methods ; Control systems ; Delay systems ; Dynamical systems ; Exponential stability ; Lyapunov functions ; Lyapunov method ; Lyapunov methods ; Mathematical analysis ; Motion control ; Nonlinear systems ; Norms ; polynomial approximation ; Polynomials ; Proving ; Stability ; Studies ; sum of squares ; Taylor series ; Vectors (mathematics)</subject><ispartof>IEEE transactions on automatic control, 2009-05, Vol.54 (5), p.979-987</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-b6e33e76f514c009969f209106500f3748fe2def3b7567171f90bd1839efc0383</citedby><cites>FETCH-LOGICAL-c364t-b6e33e76f514c009969f209106500f3748fe2def3b7567171f90bd1839efc0383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4908942$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4908942$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Peet, M.M.</creatorcontrib><title>Exponentially Stable Nonlinear Systems Have Polynomial Lyapunov Functions on Bounded Regions</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This paper presents a proof that existence of a polynomial Lyapunov function is necessary and sufficient for exponential stability of a sufficiently smooth nonlinear vector field on a bounded set. The main result states that if there exists an n -times continuously differentiable Lyapunov function which proves exponential stability on a bounded subset of Rn, then there exists a polynomial Lyapunov function which proves exponential stability on the same region. Such a continuous Lyapunov function will exist if, for example, the vector field is at least n -times continuously differentiable. The proof is based on a generalization of the Weierstrass approximation theorem to differentiable functions in several variables. Specifically, polynomials can be used to approximate a differentiable function, using the Sobolev norm W 1,infin to any desired accuracy. This approximation result is combined with the second-order Taylor series expansion to show that polynomial Lyapunov functions can approximate continuous Lyapunov functions arbitrarily well on bounded sets. The investigation is motivated by the use of polynomial optimization algorithms to construct polynomial Lyapunov functions.</description><subject>Aerodynamics</subject><subject>Approximation</subject><subject>Approximation methods</subject><subject>Control systems</subject><subject>Delay systems</subject><subject>Dynamical systems</subject><subject>Exponential stability</subject><subject>Lyapunov functions</subject><subject>Lyapunov method</subject><subject>Lyapunov methods</subject><subject>Mathematical analysis</subject><subject>Motion control</subject><subject>Nonlinear systems</subject><subject>Norms</subject><subject>polynomial approximation</subject><subject>Polynomials</subject><subject>Proving</subject><subject>Stability</subject><subject>Studies</subject><subject>sum of squares</subject><subject>Taylor series</subject><subject>Vectors (mathematics)</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1Lw0AQxRdRsFbvgpfFi6fU_Ug2u8daWisUFVtvwpKks5KS7sZsUsx_74aKBy8zzPB7w7yH0DUlE0qJut9MZxNGiAqFppSKEzSiSSIjljB-ikaEUBkpJsU5uvB-F0YRx3SEPubftbNg2zKrqh6v2yyvAD87W5UWsgave9_C3uNldgD86qreun1A8arP6s66A150tmhLZz12Fj-4zm5hi9_gc1hdojOTVR6ufvsYvS_mm9kyWr08Ps2mq6jgIm6jXADnkAqT0LgIFpRQhhFFiUgIMTyNpQG2BcPzNBFpcGcUybdUcgWmIFzyMbo73q0b99WBb_W-9AVUVWbBdV5LqbiksVCBvP1H7lzX2PCcloIyxRI1QOQIFY3zvgGj66bcZ02vKdFD2DqErYew9W_YQXJzlJQA8IfHikgVM_4DUKt6RQ</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Peet, M.M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20090501</creationdate><title>Exponentially Stable Nonlinear Systems Have Polynomial Lyapunov Functions on Bounded Regions</title><author>Peet, M.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-b6e33e76f514c009969f209106500f3748fe2def3b7567171f90bd1839efc0383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aerodynamics</topic><topic>Approximation</topic><topic>Approximation methods</topic><topic>Control systems</topic><topic>Delay systems</topic><topic>Dynamical systems</topic><topic>Exponential stability</topic><topic>Lyapunov functions</topic><topic>Lyapunov method</topic><topic>Lyapunov methods</topic><topic>Mathematical analysis</topic><topic>Motion control</topic><topic>Nonlinear systems</topic><topic>Norms</topic><topic>polynomial approximation</topic><topic>Polynomials</topic><topic>Proving</topic><topic>Stability</topic><topic>Studies</topic><topic>sum of squares</topic><topic>Taylor series</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peet, M.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peet, M.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponentially Stable Nonlinear Systems Have Polynomial Lyapunov Functions on Bounded Regions</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2009-05-01</date><risdate>2009</risdate><volume>54</volume><issue>5</issue><spage>979</spage><epage>987</epage><pages>979-987</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This paper presents a proof that existence of a polynomial Lyapunov function is necessary and sufficient for exponential stability of a sufficiently smooth nonlinear vector field on a bounded set. The main result states that if there exists an n -times continuously differentiable Lyapunov function which proves exponential stability on a bounded subset of Rn, then there exists a polynomial Lyapunov function which proves exponential stability on the same region. Such a continuous Lyapunov function will exist if, for example, the vector field is at least n -times continuously differentiable. The proof is based on a generalization of the Weierstrass approximation theorem to differentiable functions in several variables. Specifically, polynomials can be used to approximate a differentiable function, using the Sobolev norm W 1,infin to any desired accuracy. This approximation result is combined with the second-order Taylor series expansion to show that polynomial Lyapunov functions can approximate continuous Lyapunov functions arbitrarily well on bounded sets. The investigation is motivated by the use of polynomial optimization algorithms to construct polynomial Lyapunov functions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2009.2017116</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2009-05, Vol.54 (5), p.979-987 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TAC_2009_2017116 |
source | IEEE Xplore (Online service) |
subjects | Aerodynamics Approximation Approximation methods Control systems Delay systems Dynamical systems Exponential stability Lyapunov functions Lyapunov method Lyapunov methods Mathematical analysis Motion control Nonlinear systems Norms polynomial approximation Polynomials Proving Stability Studies sum of squares Taylor series Vectors (mathematics) |
title | Exponentially Stable Nonlinear Systems Have Polynomial Lyapunov Functions on Bounded Regions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A00%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponentially%20Stable%20Nonlinear%20Systems%20Have%20Polynomial%20Lyapunov%20Functions%20on%20Bounded%20Regions&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Peet,%20M.M.&rft.date=2009-05-01&rft.volume=54&rft.issue=5&rft.spage=979&rft.epage=987&rft.pages=979-987&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2009.2017116&rft_dat=%3Cproquest_RIE%3E2316712921%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861292599&rft_id=info:pmid/&rft_ieee_id=4908942&rfr_iscdi=true |