Approximations to Riccati equations having slow and fast modes

Problems associated with the optimal linear regulator when one control is penalized much less than the others, and the optimal linear estimator when one measurement is of a much higher quality than the others are considered. Both situations cause the Riccati equation's solution to have transien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 1976-12, Vol.21 (6), p.846-855
Hauptverfasser: Womble, M., Potter, J., Speyer, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 855
container_issue 6
container_start_page 846
container_title IEEE transactions on automatic control
container_volume 21
creator Womble, M.
Potter, J.
Speyer, J.
description Problems associated with the optimal linear regulator when one control is penalized much less than the others, and the optimal linear estimator when one measurement is of a much higher quality than the others are considered. Both situations cause the Riccati equation's solution to have transients with radically different speeds. In order to generate solutions with radically different transient speeds, a large number of small numerical integration time steps must be used-small to capture the rapid transient and a large number to generate the slow transient. Approximations are derived to the solutions to these Riccati equations. Although the number of scalar numerical integrations required is reduced by only one, a closed-form approximation is derived for the rapidly varying part of the transient. This allows the use of large numerical integration time steps and results in a considerable decrease in computation time. Measures are derived of both the errors in the approximations and how they affect the resulting regulators and estimators. A numerical example is given comparing the solution of the Riccati equation to its approximation.
doi_str_mv 10.1109/TAC.1976.1101372
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TAC_1976_1101372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1101372</ieee_id><sourcerecordid>28996941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-834520862ff94cc66d09301df551dfaa5b351c07c77cf1c37c3f2909d261cc383</originalsourceid><addsrcrecordid>eNqNkM1LAzEQxYMoWKt3wUtO3rZmkk02uQil-AWCIPUc4myiK9tNu9n68d-b0gWvXmZ4M-8Nw4-Qc2AzAGaulvPFDEyldgpExQ_IBKTUBZdcHJIJY6ALw7U6JicpfWSpyhIm5Hq-Xvfxu1m5oYldokOkzw1iVtRvtuPw3X023RtNbfyirqtpcGmgq1j7dEqOgmuTPxv7lLzc3iwX98Xj093DYv5YoOBiKLQoJWda8RBMiahUzYxgUAcpc3FOvgoJyCqsKgyAokIRuGGm5goQhRZTcrm_m5_dbH0a7KpJ6NvWdT5uk-XaGGVK-IdRSqa5zEa2N2IfU-p9sOs-U-h_LDC7I2ozUbsjakeiOXKxjzTe-z_7uP0FslBw5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28550825</pqid></control><display><type>article</type><title>Approximations to Riccati equations having slow and fast modes</title><source>IEEE Electronic Library (IEL)</source><creator>Womble, M. ; Potter, J. ; Speyer, J.</creator><creatorcontrib>Womble, M. ; Potter, J. ; Speyer, J.</creatorcontrib><description>Problems associated with the optimal linear regulator when one control is penalized much less than the others, and the optimal linear estimator when one measurement is of a much higher quality than the others are considered. Both situations cause the Riccati equation's solution to have transients with radically different speeds. In order to generate solutions with radically different transient speeds, a large number of small numerical integration time steps must be used-small to capture the rapid transient and a large number to generate the slow transient. Approximations are derived to the solutions to these Riccati equations. Although the number of scalar numerical integrations required is reduced by only one, a closed-form approximation is derived for the rapidly varying part of the transient. This allows the use of large numerical integration time steps and results in a considerable decrease in computation time. Measures are derived of both the errors in the approximations and how they affect the resulting regulators and estimators. A numerical example is given comparing the solution of the Riccati equation to its approximation.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.1976.1101372</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic control ; Control system synthesis ; Eigenvalues and eigenfunctions ; Riccati equations ; Robustness ; Sections ; Stability ; State feedback ; Sufficient conditions ; Transfer functions</subject><ispartof>IEEE transactions on automatic control, 1976-12, Vol.21 (6), p.846-855</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-834520862ff94cc66d09301df551dfaa5b351c07c77cf1c37c3f2909d261cc383</citedby><cites>FETCH-LOGICAL-c323t-834520862ff94cc66d09301df551dfaa5b351c07c77cf1c37c3f2909d261cc383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1101372$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1101372$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Womble, M.</creatorcontrib><creatorcontrib>Potter, J.</creatorcontrib><creatorcontrib>Speyer, J.</creatorcontrib><title>Approximations to Riccati equations having slow and fast modes</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Problems associated with the optimal linear regulator when one control is penalized much less than the others, and the optimal linear estimator when one measurement is of a much higher quality than the others are considered. Both situations cause the Riccati equation's solution to have transients with radically different speeds. In order to generate solutions with radically different transient speeds, a large number of small numerical integration time steps must be used-small to capture the rapid transient and a large number to generate the slow transient. Approximations are derived to the solutions to these Riccati equations. Although the number of scalar numerical integrations required is reduced by only one, a closed-form approximation is derived for the rapidly varying part of the transient. This allows the use of large numerical integration time steps and results in a considerable decrease in computation time. Measures are derived of both the errors in the approximations and how they affect the resulting regulators and estimators. A numerical example is given comparing the solution of the Riccati equation to its approximation.</description><subject>Automatic control</subject><subject>Control system synthesis</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Riccati equations</subject><subject>Robustness</subject><subject>Sections</subject><subject>Stability</subject><subject>State feedback</subject><subject>Sufficient conditions</subject><subject>Transfer functions</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1976</creationdate><recordtype>article</recordtype><recordid>eNqNkM1LAzEQxYMoWKt3wUtO3rZmkk02uQil-AWCIPUc4myiK9tNu9n68d-b0gWvXmZ4M-8Nw4-Qc2AzAGaulvPFDEyldgpExQ_IBKTUBZdcHJIJY6ALw7U6JicpfWSpyhIm5Hq-Xvfxu1m5oYldokOkzw1iVtRvtuPw3X023RtNbfyirqtpcGmgq1j7dEqOgmuTPxv7lLzc3iwX98Xj093DYv5YoOBiKLQoJWda8RBMiahUzYxgUAcpc3FOvgoJyCqsKgyAokIRuGGm5goQhRZTcrm_m5_dbH0a7KpJ6NvWdT5uk-XaGGVK-IdRSqa5zEa2N2IfU-p9sOs-U-h_LDC7I2ozUbsjakeiOXKxjzTe-z_7uP0FslBw5g</recordid><startdate>19761201</startdate><enddate>19761201</enddate><creator>Womble, M.</creator><creator>Potter, J.</creator><creator>Speyer, J.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>19761201</creationdate><title>Approximations to Riccati equations having slow and fast modes</title><author>Womble, M. ; Potter, J. ; Speyer, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-834520862ff94cc66d09301df551dfaa5b351c07c77cf1c37c3f2909d261cc383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1976</creationdate><topic>Automatic control</topic><topic>Control system synthesis</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Riccati equations</topic><topic>Robustness</topic><topic>Sections</topic><topic>Stability</topic><topic>State feedback</topic><topic>Sufficient conditions</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Womble, M.</creatorcontrib><creatorcontrib>Potter, J.</creatorcontrib><creatorcontrib>Speyer, J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Womble, M.</au><au>Potter, J.</au><au>Speyer, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximations to Riccati equations having slow and fast modes</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1976-12-01</date><risdate>1976</risdate><volume>21</volume><issue>6</issue><spage>846</spage><epage>855</epage><pages>846-855</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Problems associated with the optimal linear regulator when one control is penalized much less than the others, and the optimal linear estimator when one measurement is of a much higher quality than the others are considered. Both situations cause the Riccati equation's solution to have transients with radically different speeds. In order to generate solutions with radically different transient speeds, a large number of small numerical integration time steps must be used-small to capture the rapid transient and a large number to generate the slow transient. Approximations are derived to the solutions to these Riccati equations. Although the number of scalar numerical integrations required is reduced by only one, a closed-form approximation is derived for the rapidly varying part of the transient. This allows the use of large numerical integration time steps and results in a considerable decrease in computation time. Measures are derived of both the errors in the approximations and how they affect the resulting regulators and estimators. A numerical example is given comparing the solution of the Riccati equation to its approximation.</abstract><pub>IEEE</pub><doi>10.1109/TAC.1976.1101372</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 1976-12, Vol.21 (6), p.846-855
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_TAC_1976_1101372
source IEEE Electronic Library (IEL)
subjects Automatic control
Control system synthesis
Eigenvalues and eigenfunctions
Riccati equations
Robustness
Sections
Stability
State feedback
Sufficient conditions
Transfer functions
title Approximations to Riccati equations having slow and fast modes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T15%3A15%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximations%20to%20Riccati%20equations%20having%20slow%20and%20fast%20modes&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Womble,%20M.&rft.date=1976-12-01&rft.volume=21&rft.issue=6&rft.spage=846&rft.epage=855&rft.pages=846-855&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.1976.1101372&rft_dat=%3Cproquest_RIE%3E28996941%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28550825&rft_id=info:pmid/&rft_ieee_id=1101372&rfr_iscdi=true