Digital Health and Machine Learning Technologies for Blood Glucose Monitoring and Management of Gestational Diabetes

Innovations in digital health and machine learning are changing the path of clinical health and care. People from different geographical locations and cultural backgrounds can benefit from the mobility of wearable devices and smartphones to monitor their health ubiquitously. This paper focuses on re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE reviews in biomedical engineering 2024-01, Vol.17, p.1-19
Hauptverfasser: Lu, Huiqi Y., Ding, Xiaorong, Hirst, Jane E, Yang, Yang, Yang, Jenny, Mackillop, Lucy, Clifton, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue
container_start_page 1
container_title IEEE reviews in biomedical engineering
container_volume 17
creator Lu, Huiqi Y.
Ding, Xiaorong
Hirst, Jane E
Yang, Yang
Yang, Jenny
Mackillop, Lucy
Clifton, David
description Innovations in digital health and machine learning are changing the path of clinical health and care. People from different geographical locations and cultural backgrounds can benefit from the mobility of wearable devices and smartphones to monitor their health ubiquitously. This paper focuses on reviewing the digital health and machine learning technologies used in gestational diabetes - a subtype of diabetes that occurs during pregnancy. This paper reviews sensor technologies used in blood glucose monitoring devices, digital health innovations and machine learning models for gestational diabetes monitoring and management, in clinical and commercial settings, and discusses future directions. Despite one in six mothers having gestational diabetes, digital health applications were underdeveloped, especially the techniques that can be deployed in clinical practice. There is an urgent need to (1) develop clinically interpretable machine learning methods for patients with gestational diabetes, assisting health professionals with treatment, monitoring, and risk stratification before, during and after their pregnancies; (2) adapt and develop clinically-proven devices for patient self-management of health and well-being at home settings ("virtual ward" and virtual consultation), thereby improving clinical outcomes by facilitating timely intervention; and (3) ensure innovations are affordable and sustainable for all women with different socioeconomic backgrounds and clinical resources.
doi_str_mv 10.1109/RBME.2023.3242261
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_RBME_2023_3242261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10039073</ieee_id><sourcerecordid>2797149938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-a3fefb767e1ae9ed3d0fab0c38213bfbf0232901ad4ecb494a919739ffa31fb43</originalsourceid><addsrcrecordid>eNpdkU9r3DAQxUVpacImH6BQiqCXXrzRaJTIOjZ_uinsUgjJ2cj2aFfBK6WWfOi3r8xuQ-gwMDr83tMMj7FPIJYAwlw8XG_ullJIXKJUUl7BO3YKRkEFUJv38xt1haVO2HlKz6LUpdJQi4_sBLWQskZ1yvKt3_psB35Pdsg7bkPPN7bb-UB8TXYMPmz5I3W7EIe49ZS4iyO_HmLs-WqYupiIb2LwOY4zeZAHu6U9hcyj4ytK2WYfQ_nj1tuWMqUz9sHZIdH5cS7Y04-7x5v7av1r9fPm-7rq0GCuLDpyrb7SBJYM9dgLZ1vRYS0BW9e6crw0AmyvqGuVUdaA0WicswiuVbhg3w6-L2P8PZVFmr1PHQ2DDRSn1EhtNChjsC7o1__Q5ziNZelCGcDL0mUsGByobowpjeSal9Hv7finAdHMqTRzKs2cSnNMpWi-HJ2ndk_9q-JfBgX4fAA8Eb0xFGiERvwLPzKRQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913513591</pqid></control><display><type>article</type><title>Digital Health and Machine Learning Technologies for Blood Glucose Monitoring and Management of Gestational Diabetes</title><source>IEEE Xplore (Online service)</source><creator>Lu, Huiqi Y. ; Ding, Xiaorong ; Hirst, Jane E ; Yang, Yang ; Yang, Jenny ; Mackillop, Lucy ; Clifton, David</creator><creatorcontrib>Lu, Huiqi Y. ; Ding, Xiaorong ; Hirst, Jane E ; Yang, Yang ; Yang, Jenny ; Mackillop, Lucy ; Clifton, David</creatorcontrib><description>Innovations in digital health and machine learning are changing the path of clinical health and care. People from different geographical locations and cultural backgrounds can benefit from the mobility of wearable devices and smartphones to monitor their health ubiquitously. This paper focuses on reviewing the digital health and machine learning technologies used in gestational diabetes - a subtype of diabetes that occurs during pregnancy. This paper reviews sensor technologies used in blood glucose monitoring devices, digital health innovations and machine learning models for gestational diabetes monitoring and management, in clinical and commercial settings, and discusses future directions. Despite one in six mothers having gestational diabetes, digital health applications were underdeveloped, especially the techniques that can be deployed in clinical practice. There is an urgent need to (1) develop clinically interpretable machine learning methods for patients with gestational diabetes, assisting health professionals with treatment, monitoring, and risk stratification before, during and after their pregnancies; (2) adapt and develop clinically-proven devices for patient self-management of health and well-being at home settings ("virtual ward" and virtual consultation), thereby improving clinical outcomes by facilitating timely intervention; and (3) ensure innovations are affordable and sustainable for all women with different socioeconomic backgrounds and clinical resources.</description><identifier>ISSN: 1937-3333</identifier><identifier>ISSN: 1941-1189</identifier><identifier>EISSN: 1941-1189</identifier><identifier>DOI: 10.1109/RBME.2023.3242261</identifier><identifier>PMID: 37022834</identifier><identifier>CODEN: IRBECO</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Blood ; Blood Glucose ; Blood Glucose Self-Monitoring - methods ; Blood glucose sensors ; Diabetes ; Diabetes mellitus ; Diabetes, Gestational - diagnosis ; Diabetes, Gestational - therapy ; Digital Health ; Electronic healthcare ; Female ; Geographical locations ; Gestational diabetes ; Glucose ; Glucose monitoring ; Humans ; Innovations ; Learning algorithms ; Machine Learning ; Medical personnel ; Monitoring ; patient monitoring ; Patients ; Pregnancy ; Pregnancy complications ; Smartphones ; Technological change ; Telemedicine ; Wearable technology</subject><ispartof>IEEE reviews in biomedical engineering, 2024-01, Vol.17, p.1-19</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-a3fefb767e1ae9ed3d0fab0c38213bfbf0232901ad4ecb494a919739ffa31fb43</citedby><cites>FETCH-LOGICAL-c393t-a3fefb767e1ae9ed3d0fab0c38213bfbf0232901ad4ecb494a919739ffa31fb43</cites><orcidid>0000-0003-0352-8452 ; 0000-0002-3269-2852 ; 0000-0002-6140-3394 ; 0000-0002-0576-9455 ; 0000-0002-1927-1594 ; 0000-0002-9848-8555 ; 0000-0002-0176-2651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10039073$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10039073$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37022834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Huiqi Y.</creatorcontrib><creatorcontrib>Ding, Xiaorong</creatorcontrib><creatorcontrib>Hirst, Jane E</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Yang, Jenny</creatorcontrib><creatorcontrib>Mackillop, Lucy</creatorcontrib><creatorcontrib>Clifton, David</creatorcontrib><title>Digital Health and Machine Learning Technologies for Blood Glucose Monitoring and Management of Gestational Diabetes</title><title>IEEE reviews in biomedical engineering</title><addtitle>RBME</addtitle><addtitle>IEEE Rev Biomed Eng</addtitle><description>Innovations in digital health and machine learning are changing the path of clinical health and care. People from different geographical locations and cultural backgrounds can benefit from the mobility of wearable devices and smartphones to monitor their health ubiquitously. This paper focuses on reviewing the digital health and machine learning technologies used in gestational diabetes - a subtype of diabetes that occurs during pregnancy. This paper reviews sensor technologies used in blood glucose monitoring devices, digital health innovations and machine learning models for gestational diabetes monitoring and management, in clinical and commercial settings, and discusses future directions. Despite one in six mothers having gestational diabetes, digital health applications were underdeveloped, especially the techniques that can be deployed in clinical practice. There is an urgent need to (1) develop clinically interpretable machine learning methods for patients with gestational diabetes, assisting health professionals with treatment, monitoring, and risk stratification before, during and after their pregnancies; (2) adapt and develop clinically-proven devices for patient self-management of health and well-being at home settings ("virtual ward" and virtual consultation), thereby improving clinical outcomes by facilitating timely intervention; and (3) ensure innovations are affordable and sustainable for all women with different socioeconomic backgrounds and clinical resources.</description><subject>Blood</subject><subject>Blood Glucose</subject><subject>Blood Glucose Self-Monitoring - methods</subject><subject>Blood glucose sensors</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes, Gestational - diagnosis</subject><subject>Diabetes, Gestational - therapy</subject><subject>Digital Health</subject><subject>Electronic healthcare</subject><subject>Female</subject><subject>Geographical locations</subject><subject>Gestational diabetes</subject><subject>Glucose</subject><subject>Glucose monitoring</subject><subject>Humans</subject><subject>Innovations</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Medical personnel</subject><subject>Monitoring</subject><subject>patient monitoring</subject><subject>Patients</subject><subject>Pregnancy</subject><subject>Pregnancy complications</subject><subject>Smartphones</subject><subject>Technological change</subject><subject>Telemedicine</subject><subject>Wearable technology</subject><issn>1937-3333</issn><issn>1941-1189</issn><issn>1941-1189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU9r3DAQxUVpacImH6BQiqCXXrzRaJTIOjZ_uinsUgjJ2cj2aFfBK6WWfOi3r8xuQ-gwMDr83tMMj7FPIJYAwlw8XG_ullJIXKJUUl7BO3YKRkEFUJv38xt1haVO2HlKz6LUpdJQi4_sBLWQskZ1yvKt3_psB35Pdsg7bkPPN7bb-UB8TXYMPmz5I3W7EIe49ZS4iyO_HmLs-WqYupiIb2LwOY4zeZAHu6U9hcyj4ytK2WYfQ_nj1tuWMqUz9sHZIdH5cS7Y04-7x5v7av1r9fPm-7rq0GCuLDpyrb7SBJYM9dgLZ1vRYS0BW9e6crw0AmyvqGuVUdaA0WicswiuVbhg3w6-L2P8PZVFmr1PHQ2DDRSn1EhtNChjsC7o1__Q5ziNZelCGcDL0mUsGByobowpjeSal9Hv7finAdHMqTRzKs2cSnNMpWi-HJ2ndk_9q-JfBgX4fAA8Eb0xFGiERvwLPzKRQw</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Lu, Huiqi Y.</creator><creator>Ding, Xiaorong</creator><creator>Hirst, Jane E</creator><creator>Yang, Yang</creator><creator>Yang, Jenny</creator><creator>Mackillop, Lucy</creator><creator>Clifton, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0352-8452</orcidid><orcidid>https://orcid.org/0000-0002-3269-2852</orcidid><orcidid>https://orcid.org/0000-0002-6140-3394</orcidid><orcidid>https://orcid.org/0000-0002-0576-9455</orcidid><orcidid>https://orcid.org/0000-0002-1927-1594</orcidid><orcidid>https://orcid.org/0000-0002-9848-8555</orcidid><orcidid>https://orcid.org/0000-0002-0176-2651</orcidid></search><sort><creationdate>20240101</creationdate><title>Digital Health and Machine Learning Technologies for Blood Glucose Monitoring and Management of Gestational Diabetes</title><author>Lu, Huiqi Y. ; Ding, Xiaorong ; Hirst, Jane E ; Yang, Yang ; Yang, Jenny ; Mackillop, Lucy ; Clifton, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-a3fefb767e1ae9ed3d0fab0c38213bfbf0232901ad4ecb494a919739ffa31fb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Blood</topic><topic>Blood Glucose</topic><topic>Blood Glucose Self-Monitoring - methods</topic><topic>Blood glucose sensors</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes, Gestational - diagnosis</topic><topic>Diabetes, Gestational - therapy</topic><topic>Digital Health</topic><topic>Electronic healthcare</topic><topic>Female</topic><topic>Geographical locations</topic><topic>Gestational diabetes</topic><topic>Glucose</topic><topic>Glucose monitoring</topic><topic>Humans</topic><topic>Innovations</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Medical personnel</topic><topic>Monitoring</topic><topic>patient monitoring</topic><topic>Patients</topic><topic>Pregnancy</topic><topic>Pregnancy complications</topic><topic>Smartphones</topic><topic>Technological change</topic><topic>Telemedicine</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Huiqi Y.</creatorcontrib><creatorcontrib>Ding, Xiaorong</creatorcontrib><creatorcontrib>Hirst, Jane E</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Yang, Jenny</creatorcontrib><creatorcontrib>Mackillop, Lucy</creatorcontrib><creatorcontrib>Clifton, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE reviews in biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Huiqi Y.</au><au>Ding, Xiaorong</au><au>Hirst, Jane E</au><au>Yang, Yang</au><au>Yang, Jenny</au><au>Mackillop, Lucy</au><au>Clifton, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital Health and Machine Learning Technologies for Blood Glucose Monitoring and Management of Gestational Diabetes</atitle><jtitle>IEEE reviews in biomedical engineering</jtitle><stitle>RBME</stitle><addtitle>IEEE Rev Biomed Eng</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>17</volume><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>1937-3333</issn><issn>1941-1189</issn><eissn>1941-1189</eissn><coden>IRBECO</coden><abstract>Innovations in digital health and machine learning are changing the path of clinical health and care. People from different geographical locations and cultural backgrounds can benefit from the mobility of wearable devices and smartphones to monitor their health ubiquitously. This paper focuses on reviewing the digital health and machine learning technologies used in gestational diabetes - a subtype of diabetes that occurs during pregnancy. This paper reviews sensor technologies used in blood glucose monitoring devices, digital health innovations and machine learning models for gestational diabetes monitoring and management, in clinical and commercial settings, and discusses future directions. Despite one in six mothers having gestational diabetes, digital health applications were underdeveloped, especially the techniques that can be deployed in clinical practice. There is an urgent need to (1) develop clinically interpretable machine learning methods for patients with gestational diabetes, assisting health professionals with treatment, monitoring, and risk stratification before, during and after their pregnancies; (2) adapt and develop clinically-proven devices for patient self-management of health and well-being at home settings ("virtual ward" and virtual consultation), thereby improving clinical outcomes by facilitating timely intervention; and (3) ensure innovations are affordable and sustainable for all women with different socioeconomic backgrounds and clinical resources.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37022834</pmid><doi>10.1109/RBME.2023.3242261</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-0352-8452</orcidid><orcidid>https://orcid.org/0000-0002-3269-2852</orcidid><orcidid>https://orcid.org/0000-0002-6140-3394</orcidid><orcidid>https://orcid.org/0000-0002-0576-9455</orcidid><orcidid>https://orcid.org/0000-0002-1927-1594</orcidid><orcidid>https://orcid.org/0000-0002-9848-8555</orcidid><orcidid>https://orcid.org/0000-0002-0176-2651</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1937-3333
ispartof IEEE reviews in biomedical engineering, 2024-01, Vol.17, p.1-19
issn 1937-3333
1941-1189
1941-1189
language eng
recordid cdi_crossref_primary_10_1109_RBME_2023_3242261
source IEEE Xplore (Online service)
subjects Blood
Blood Glucose
Blood Glucose Self-Monitoring - methods
Blood glucose sensors
Diabetes
Diabetes mellitus
Diabetes, Gestational - diagnosis
Diabetes, Gestational - therapy
Digital Health
Electronic healthcare
Female
Geographical locations
Gestational diabetes
Glucose
Glucose monitoring
Humans
Innovations
Learning algorithms
Machine Learning
Medical personnel
Monitoring
patient monitoring
Patients
Pregnancy
Pregnancy complications
Smartphones
Technological change
Telemedicine
Wearable technology
title Digital Health and Machine Learning Technologies for Blood Glucose Monitoring and Management of Gestational Diabetes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A02%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital%20Health%20and%20Machine%20Learning%20Technologies%20for%20Blood%20Glucose%20Monitoring%20and%20Management%20of%20Gestational%20Diabetes&rft.jtitle=IEEE%20reviews%20in%20biomedical%20engineering&rft.au=Lu,%20Huiqi%20Y.&rft.date=2024-01-01&rft.volume=17&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=1937-3333&rft.eissn=1941-1189&rft.coden=IRBECO&rft_id=info:doi/10.1109/RBME.2023.3242261&rft_dat=%3Cproquest_RIE%3E2797149938%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913513591&rft_id=info:pmid/37022834&rft_ieee_id=10039073&rfr_iscdi=true