Comment on "On zero location with respect to the unit circle of discrete-time linear system polynomials"

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE 1986-12, Vol.74 (12), p.1802-1803
1. Verfasser: Bistritz, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1803
container_issue 12
container_start_page 1802
container_title Proceedings of the IEEE
container_volume 74
creator Bistritz, Y.
description
doi_str_mv 10.1109/PROC.1986.13694
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_PROC_1986_13694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1457962</ieee_id><sourcerecordid>8294827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-8932138bba50b4e64ba0aeb8c3114fb9107a7a45a33a062409c5e62d31e40b9d3</originalsourceid><addsrcrecordid>eNpFkEtLxDAYRYMoOD7WLtyEwW1n8m6ylOILBkZE1yXNfGUibVOSiIy_3o4jurpwuecuDkJXlCwoJWb5_LKuFtRotaBcGXGEZlRKXTAm1TGaEUJ1YRg1p-gspXdCCJeKz9C2Cn0PQ8ZhwPP1gL8gBtwFZ7Ofmk-ftzhCGsFlnAPOW8Afg8_Y-eg6wKHFG59chAxF9j3gzg9gI067lKHHY-h2Q-i97dL8Ap20U8Llb56jt_u71-qxWK0fnqrbVeEY4bnQhjPKddNYSRoBSjSWWGi045SKtjGUlLa0QlrOLVFMEOMkKLbhFARpzIafo-Xh18WQUoS2HqPvbdzVlNR7UfVeVL0XVf-ImoibAzHa5GzXRjs4n_4wzYzQrJxm14eZB4D_UyFLoxj_BuascgU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comment on "On zero location with respect to the unit circle of discrete-time linear system polynomials"</title><source>IEEE Electronic Library (IEL)</source><creator>Bistritz, Y.</creator><creatorcontrib>Bistritz, Y.</creatorcontrib><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/PROC.1986.13694</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Chebyshev approximation ; Computer science; control theory; systems ; Control system analysis ; Control theory. Systems ; Exact sciences and technology ; Information systems ; Linear systems ; Polynomials</subject><ispartof>Proceedings of the IEEE, 1986-12, Vol.74 (12), p.1802-1803</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-8932138bba50b4e64ba0aeb8c3114fb9107a7a45a33a062409c5e62d31e40b9d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1457962$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1457962$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8294827$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bistritz, Y.</creatorcontrib><title>Comment on "On zero location with respect to the unit circle of discrete-time linear system polynomials"</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><subject>Applied sciences</subject><subject>Chebyshev approximation</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Information systems</subject><subject>Linear systems</subject><subject>Polynomials</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLxDAYRYMoOD7WLtyEwW1n8m6ylOILBkZE1yXNfGUibVOSiIy_3o4jurpwuecuDkJXlCwoJWb5_LKuFtRotaBcGXGEZlRKXTAm1TGaEUJ1YRg1p-gspXdCCJeKz9C2Cn0PQ8ZhwPP1gL8gBtwFZ7Ofmk-ftzhCGsFlnAPOW8Afg8_Y-eg6wKHFG59chAxF9j3gzg9gI067lKHHY-h2Q-i97dL8Ap20U8Llb56jt_u71-qxWK0fnqrbVeEY4bnQhjPKddNYSRoBSjSWWGi045SKtjGUlLa0QlrOLVFMEOMkKLbhFARpzIafo-Xh18WQUoS2HqPvbdzVlNR7UfVeVL0XVf-ImoibAzHa5GzXRjs4n_4wzYzQrJxm14eZB4D_UyFLoxj_BuascgU</recordid><startdate>198612</startdate><enddate>198612</enddate><creator>Bistritz, Y.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198612</creationdate><title>Comment on "On zero location with respect to the unit circle of discrete-time linear system polynomials"</title><author>Bistritz, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-8932138bba50b4e64ba0aeb8c3114fb9107a7a45a33a062409c5e62d31e40b9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Applied sciences</topic><topic>Chebyshev approximation</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Information systems</topic><topic>Linear systems</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bistritz, Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bistritz, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comment on "On zero location with respect to the unit circle of discrete-time linear system polynomials"</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>1986-12</date><risdate>1986</risdate><volume>74</volume><issue>12</issue><spage>1802</spage><epage>1803</epage><pages>1802-1803</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/PROC.1986.13694</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9219
ispartof Proceedings of the IEEE, 1986-12, Vol.74 (12), p.1802-1803
issn 0018-9219
1558-2256
language eng
recordid cdi_crossref_primary_10_1109_PROC_1986_13694
source IEEE Electronic Library (IEL)
subjects Applied sciences
Chebyshev approximation
Computer science
control theory
systems
Control system analysis
Control theory. Systems
Exact sciences and technology
Information systems
Linear systems
Polynomials
title Comment on "On zero location with respect to the unit circle of discrete-time linear system polynomials"
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A43%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comment%20on%20%22On%20zero%20location%20with%20respect%20to%20the%20unit%20circle%20of%20discrete-time%20linear%20system%20polynomials%22&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Bistritz,%20Y.&rft.date=1986-12&rft.volume=74&rft.issue=12&rft.spage=1802&rft.epage=1803&rft.pages=1802-1803&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/PROC.1986.13694&rft_dat=%3Cpascalfrancis_RIE%3E8294827%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1457962&rfr_iscdi=true