Knowledge engineering for medical decision making: A review of computer-based clinical decision aids
Computer-based models of medical decision making account for a large portion of clinical computing efforts. This article reviews representative examples from each of several major medical computing paradigms. These include 1) clinical algorithms, 2) clinical databanks that include analytic functions...
Gespeichert in:
Veröffentlicht in: | Proceedings of the IEEE 1979-01, Vol.67 (9), p.1207-1224 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1224 |
---|---|
container_issue | 9 |
container_start_page | 1207 |
container_title | Proceedings of the IEEE |
container_volume | 67 |
creator | Shortliffe, E.H. Buchanan, B.G. Feigenbaum, E.A. |
description | Computer-based models of medical decision making account for a large portion of clinical computing efforts. This article reviews representative examples from each of several major medical computing paradigms. These include 1) clinical algorithms, 2) clinical databanks that include analytic functions, 3) mathematical models of physical processes, 4) pattern recognition, 5) Bayesian statistics, 6) decision analysis, and 7) symbolic reasoning or artificial intelligence. Because the techniques used in the various systems cannot be examined exhaustively, the case studies in each category are used as a basis for studying general strengths and limitations. It is noted that no one method is best for all applications. However, emphasis is given to the limitations of early work that have made artificial intelligence techniques and knowledge engineering research particularly attractive. We stress that considerable basic research in medical computing remains to be done and that powerful new approaches may lie in the melding of two or more established techniques. |
doi_str_mv | 10.1109/PROC.1979.11436 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_PROC_1979_11436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1455705</ieee_id><sourcerecordid>10_1109_PROC_1979_11436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-779b1debfa44cf44b517b2b71b8170a06f7c92fdaa6a8508bccc00448424cbd33</originalsourceid><addsrcrecordid>eNpVkEtLAzEUhbNQsFbXLtzkD0x7M5NMJu7KoFYsVETXQx43Q3QeJakW_72tFcTV5XDPdxYfIVcMZoyBmj89r-sZU1LtIy_KEzIBYFWmcqbOyHlKbwBQiLKYEPc4jLsOXYsUhzYMiDEMLfVjpD26YHVHHdqQwjjQXr_vfzd0QSN-BtzR0VM79puPLcbM6ISO2i4M_yEdXLogp153CS9_75S83t2-1Mtstb5_qBerzOZCbTMplWEOjdecW8-5EUya3EhmKiZBQ-mlVbl3Wpe6ElAZay0A5xXPuTWuKKZkfty1cUwpom82MfQ6fjUMmoOY5iCmOYhpfsTsiesjERDxr82FkCCKb5dUYwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Knowledge engineering for medical decision making: A review of computer-based clinical decision aids</title><source>IEEE Electronic Library (IEL)</source><creator>Shortliffe, E.H. ; Buchanan, B.G. ; Feigenbaum, E.A.</creator><creatorcontrib>Shortliffe, E.H. ; Buchanan, B.G. ; Feigenbaum, E.A.</creatorcontrib><description>Computer-based models of medical decision making account for a large portion of clinical computing efforts. This article reviews representative examples from each of several major medical computing paradigms. These include 1) clinical algorithms, 2) clinical databanks that include analytic functions, 3) mathematical models of physical processes, 4) pattern recognition, 5) Bayesian statistics, 6) decision analysis, and 7) symbolic reasoning or artificial intelligence. Because the techniques used in the various systems cannot be examined exhaustively, the case studies in each category are used as a basis for studying general strengths and limitations. It is noted that no one method is best for all applications. However, emphasis is given to the limitations of early work that have made artificial intelligence techniques and knowledge engineering research particularly attractive. We stress that considerable basic research in medical computing remains to be done and that powerful new approaches may lie in the melding of two or more established techniques.</description><identifier>ISSN: 0018-9219</identifier><identifier>DOI: 10.1109/PROC.1979.11436</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Artificial intelligence ; Bayesian methods ; Biomedical computing ; Data analysis ; Decision making ; Knowledge engineering ; Mathematical model ; Pattern analysis ; Pattern recognition</subject><ispartof>Proceedings of the IEEE, 1979-01, Vol.67 (9), p.1207-1224</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-779b1debfa44cf44b517b2b71b8170a06f7c92fdaa6a8508bccc00448424cbd33</citedby><cites>FETCH-LOGICAL-c259t-779b1debfa44cf44b517b2b71b8170a06f7c92fdaa6a8508bccc00448424cbd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1455705$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1455705$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shortliffe, E.H.</creatorcontrib><creatorcontrib>Buchanan, B.G.</creatorcontrib><creatorcontrib>Feigenbaum, E.A.</creatorcontrib><title>Knowledge engineering for medical decision making: A review of computer-based clinical decision aids</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>Computer-based models of medical decision making account for a large portion of clinical computing efforts. This article reviews representative examples from each of several major medical computing paradigms. These include 1) clinical algorithms, 2) clinical databanks that include analytic functions, 3) mathematical models of physical processes, 4) pattern recognition, 5) Bayesian statistics, 6) decision analysis, and 7) symbolic reasoning or artificial intelligence. Because the techniques used in the various systems cannot be examined exhaustively, the case studies in each category are used as a basis for studying general strengths and limitations. It is noted that no one method is best for all applications. However, emphasis is given to the limitations of early work that have made artificial intelligence techniques and knowledge engineering research particularly attractive. We stress that considerable basic research in medical computing remains to be done and that powerful new approaches may lie in the melding of two or more established techniques.</description><subject>Algorithm design and analysis</subject><subject>Artificial intelligence</subject><subject>Bayesian methods</subject><subject>Biomedical computing</subject><subject>Data analysis</subject><subject>Decision making</subject><subject>Knowledge engineering</subject><subject>Mathematical model</subject><subject>Pattern analysis</subject><subject>Pattern recognition</subject><issn>0018-9219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1979</creationdate><recordtype>article</recordtype><recordid>eNpVkEtLAzEUhbNQsFbXLtzkD0x7M5NMJu7KoFYsVETXQx43Q3QeJakW_72tFcTV5XDPdxYfIVcMZoyBmj89r-sZU1LtIy_KEzIBYFWmcqbOyHlKbwBQiLKYEPc4jLsOXYsUhzYMiDEMLfVjpD26YHVHHdqQwjjQXr_vfzd0QSN-BtzR0VM79puPLcbM6ISO2i4M_yEdXLogp153CS9_75S83t2-1Mtstb5_qBerzOZCbTMplWEOjdecW8-5EUya3EhmKiZBQ-mlVbl3Wpe6ElAZay0A5xXPuTWuKKZkfty1cUwpom82MfQ6fjUMmoOY5iCmOYhpfsTsiesjERDxr82FkCCKb5dUYwg</recordid><startdate>19790101</startdate><enddate>19790101</enddate><creator>Shortliffe, E.H.</creator><creator>Buchanan, B.G.</creator><creator>Feigenbaum, E.A.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19790101</creationdate><title>Knowledge engineering for medical decision making: A review of computer-based clinical decision aids</title><author>Shortliffe, E.H. ; Buchanan, B.G. ; Feigenbaum, E.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-779b1debfa44cf44b517b2b71b8170a06f7c92fdaa6a8508bccc00448424cbd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1979</creationdate><topic>Algorithm design and analysis</topic><topic>Artificial intelligence</topic><topic>Bayesian methods</topic><topic>Biomedical computing</topic><topic>Data analysis</topic><topic>Decision making</topic><topic>Knowledge engineering</topic><topic>Mathematical model</topic><topic>Pattern analysis</topic><topic>Pattern recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shortliffe, E.H.</creatorcontrib><creatorcontrib>Buchanan, B.G.</creatorcontrib><creatorcontrib>Feigenbaum, E.A.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shortliffe, E.H.</au><au>Buchanan, B.G.</au><au>Feigenbaum, E.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge engineering for medical decision making: A review of computer-based clinical decision aids</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>1979-01-01</date><risdate>1979</risdate><volume>67</volume><issue>9</issue><spage>1207</spage><epage>1224</epage><pages>1207-1224</pages><issn>0018-9219</issn><coden>IEEPAD</coden><abstract>Computer-based models of medical decision making account for a large portion of clinical computing efforts. This article reviews representative examples from each of several major medical computing paradigms. These include 1) clinical algorithms, 2) clinical databanks that include analytic functions, 3) mathematical models of physical processes, 4) pattern recognition, 5) Bayesian statistics, 6) decision analysis, and 7) symbolic reasoning or artificial intelligence. Because the techniques used in the various systems cannot be examined exhaustively, the case studies in each category are used as a basis for studying general strengths and limitations. It is noted that no one method is best for all applications. However, emphasis is given to the limitations of early work that have made artificial intelligence techniques and knowledge engineering research particularly attractive. We stress that considerable basic research in medical computing remains to be done and that powerful new approaches may lie in the melding of two or more established techniques.</abstract><pub>IEEE</pub><doi>10.1109/PROC.1979.11436</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9219 |
ispartof | Proceedings of the IEEE, 1979-01, Vol.67 (9), p.1207-1224 |
issn | 0018-9219 |
language | eng |
recordid | cdi_crossref_primary_10_1109_PROC_1979_11436 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Artificial intelligence Bayesian methods Biomedical computing Data analysis Decision making Knowledge engineering Mathematical model Pattern analysis Pattern recognition |
title | Knowledge engineering for medical decision making: A review of computer-based clinical decision aids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge%20engineering%20for%20medical%20decision%20making:%20A%20review%20of%20computer-based%20clinical%20decision%20aids&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Shortliffe,%20E.H.&rft.date=1979-01-01&rft.volume=67&rft.issue=9&rft.spage=1207&rft.epage=1224&rft.pages=1207-1224&rft.issn=0018-9219&rft.coden=IEEPAD&rft_id=info:doi/10.1109/PROC.1979.11436&rft_dat=%3Ccrossref_RIE%3E10_1109_PROC_1979_11436%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1455705&rfr_iscdi=true |