Data processing techniques for the detection and interpretation of teleseismic signals
This paper is a collection of six papers describing recent developments in automated detection and identification of teleseismic earthquakes and explosions in a seismic noise background. The first paper evaluates the assumption that the outputs of seismometer arrays can be added since the signals wi...
Gespeichert in:
Veröffentlicht in: | Proc. IEEE (Inst. Elec. Electron. Eng.) 1965-01, Vol.53 (12), p.1860-1861 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1861 |
---|---|
container_issue | 12 |
container_start_page | 1860 |
container_title | Proc. IEEE (Inst. Elec. Electron. Eng.) |
container_volume | 53 |
creator | Archambeau, C.B. Bradford, J.C. Broome, P.W. Dean, W.C. Flinn, E.A. Sax, R.L. |
description | This paper is a collection of six papers describing recent developments in automated detection and identification of teleseismic earthquakes and explosions in a seismic noise background. The first paper evaluates the assumption that the outputs of seismometer arrays can be added since the signals will reinforce while the noise is cancelled. Signal and noise correlations vs. distance and frequency are presented for an array of 1600 km in extent. The second paper describes a method utilizing orthogonal expansions of the Kautz type in an effort to determine spectral and temporal differences between both types of signals and noise. Theory and measurements indicate that the seismic noise background is largely composed of fundamental and higher mode Rayleigh waves. The third paper describes a thermal equilibrium analogy to estimate the noise energies in each mode to account for the observed depth and frequency behavior. The use of multiple and partial coherence functions for resolving noise backgrounds into their propagation components is described in the fourth paper. Compressional, shear, and surface wave components of signals can be separated from seismic noise backgrounds by recognizing their differing polarization properties, as shown in the fifth paper. The source mechanisms can theoretically be identified from their radiation patterns provided instrument and travel path distortions are removed. A final paper describes this theory and how these various methods of detecting and isolating the signals can be integrated into an automated signal analysis system. |
doi_str_mv | 10.1109/PROC.1965.4457 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_PROC_1965_4457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1446387</ieee_id><sourcerecordid>10_1109_PROC_1965_4457</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-2c6429f9faf66624002adf520561ba4a99ebe1fe3a49e2f3e2d826995d2d7d333</originalsourceid><addsrcrecordid>eNpFkM1LAzEUxIMoWKtXL16C913zvZujVKtCoSLqNaS7L22kTWoSD_737lrB08Aw85j3Q-iSkppSom-eX5azmmolayFkc4QmVMq2YkyqYzQhhLaVZlSforOcPwghXCo-Qe93tli8T7GDnH1Y4wLdJvjPL8jYxYTLBnAPg1l8DNiGHvtQIO0TFPtrRTdUtpDB553vcPbrYLf5HJ24QeDiT6fobX7_OnusFsuHp9ntorKcNKVinRJMO-2sU0oxQQizvZOMSEVXVlitYQXUAbdCA3McWN8ypbXsWd_0nPMpuj7cjbl4kzs_zu9iCMNgI6Rqxy-nqD6EuhRzTuDMPvmdTd-GEjOiMyM6M6IzI7qhcHUoeAD4DwuheNvwH6j_a4M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data processing techniques for the detection and interpretation of teleseismic signals</title><source>IEEE Electronic Library (IEL)</source><creator>Archambeau, C.B. ; Bradford, J.C. ; Broome, P.W. ; Dean, W.C. ; Flinn, E.A. ; Sax, R.L.</creator><creatorcontrib>Archambeau, C.B. ; Bradford, J.C. ; Broome, P.W. ; Dean, W.C. ; Flinn, E.A. ; Sax, R.L. ; Seismic Data Lab., Teledyne Inc., Alexandria, Va</creatorcontrib><description>This paper is a collection of six papers describing recent developments in automated detection and identification of teleseismic earthquakes and explosions in a seismic noise background. The first paper evaluates the assumption that the outputs of seismometer arrays can be added since the signals will reinforce while the noise is cancelled. Signal and noise correlations vs. distance and frequency are presented for an array of 1600 km in extent. The second paper describes a method utilizing orthogonal expansions of the Kautz type in an effort to determine spectral and temporal differences between both types of signals and noise. Theory and measurements indicate that the seismic noise background is largely composed of fundamental and higher mode Rayleigh waves. The third paper describes a thermal equilibrium analogy to estimate the noise energies in each mode to account for the observed depth and frequency behavior. The use of multiple and partial coherence functions for resolving noise backgrounds into their propagation components is described in the fourth paper. Compressional, shear, and surface wave components of signals can be separated from seismic noise backgrounds by recognizing their differing polarization properties, as shown in the fifth paper. The source mechanisms can theoretically be identified from their radiation patterns provided instrument and travel path distortions are removed. A final paper describes this theory and how these various methods of detecting and isolating the signals can be integrated into an automated signal analysis system.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/PROC.1965.4457</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>BACKGROUND ; Background noise ; Coherence ; COMPUTERS ; CONFIGURATION ; DATA PROCESSING ; DEFORMATION ; DETECTION ; EARTH ; Earthquakes ; ENERGY ; Explosions ; FREQUENCY ; Frequency estimation ; GEOLOGY, METEOROLOGY, AND MINERALOGY ; LATTICES ; LEVELS ; Noise cancellation ; Noise measurement ; NUCLEAR EXPLOSIONS ; NUMERICALS ; POLARIZATION ; PRESSURE ; RESOLUTION ; RESONANCE ; Seismic measurements ; SEISMOLOGY ; SHEAR WAVES ; SHOCK WAVES ; Signal processing ; SIGNALS ; SPECTRA ; SURFACES ; Techniques and Equipment ; THERMODYNAMICS ; VARIATIONS</subject><ispartof>Proc. IEEE (Inst. Elec. Electron. Eng.), 1965-01, Vol.53 (12), p.1860-1861</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-2c6429f9faf66624002adf520561ba4a99ebe1fe3a49e2f3e2d826995d2d7d333</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1446387$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,882,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1446387$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/4568356$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Archambeau, C.B.</creatorcontrib><creatorcontrib>Bradford, J.C.</creatorcontrib><creatorcontrib>Broome, P.W.</creatorcontrib><creatorcontrib>Dean, W.C.</creatorcontrib><creatorcontrib>Flinn, E.A.</creatorcontrib><creatorcontrib>Sax, R.L.</creatorcontrib><creatorcontrib>Seismic Data Lab., Teledyne Inc., Alexandria, Va</creatorcontrib><title>Data processing techniques for the detection and interpretation of teleseismic signals</title><title>Proc. IEEE (Inst. Elec. Electron. Eng.)</title><addtitle>JPROC</addtitle><description>This paper is a collection of six papers describing recent developments in automated detection and identification of teleseismic earthquakes and explosions in a seismic noise background. The first paper evaluates the assumption that the outputs of seismometer arrays can be added since the signals will reinforce while the noise is cancelled. Signal and noise correlations vs. distance and frequency are presented for an array of 1600 km in extent. The second paper describes a method utilizing orthogonal expansions of the Kautz type in an effort to determine spectral and temporal differences between both types of signals and noise. Theory and measurements indicate that the seismic noise background is largely composed of fundamental and higher mode Rayleigh waves. The third paper describes a thermal equilibrium analogy to estimate the noise energies in each mode to account for the observed depth and frequency behavior. The use of multiple and partial coherence functions for resolving noise backgrounds into their propagation components is described in the fourth paper. Compressional, shear, and surface wave components of signals can be separated from seismic noise backgrounds by recognizing their differing polarization properties, as shown in the fifth paper. The source mechanisms can theoretically be identified from their radiation patterns provided instrument and travel path distortions are removed. A final paper describes this theory and how these various methods of detecting and isolating the signals can be integrated into an automated signal analysis system.</description><subject>BACKGROUND</subject><subject>Background noise</subject><subject>Coherence</subject><subject>COMPUTERS</subject><subject>CONFIGURATION</subject><subject>DATA PROCESSING</subject><subject>DEFORMATION</subject><subject>DETECTION</subject><subject>EARTH</subject><subject>Earthquakes</subject><subject>ENERGY</subject><subject>Explosions</subject><subject>FREQUENCY</subject><subject>Frequency estimation</subject><subject>GEOLOGY, METEOROLOGY, AND MINERALOGY</subject><subject>LATTICES</subject><subject>LEVELS</subject><subject>Noise cancellation</subject><subject>Noise measurement</subject><subject>NUCLEAR EXPLOSIONS</subject><subject>NUMERICALS</subject><subject>POLARIZATION</subject><subject>PRESSURE</subject><subject>RESOLUTION</subject><subject>RESONANCE</subject><subject>Seismic measurements</subject><subject>SEISMOLOGY</subject><subject>SHEAR WAVES</subject><subject>SHOCK WAVES</subject><subject>Signal processing</subject><subject>SIGNALS</subject><subject>SPECTRA</subject><subject>SURFACES</subject><subject>Techniques and Equipment</subject><subject>THERMODYNAMICS</subject><subject>VARIATIONS</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1965</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LAzEUxIMoWKtXL16C913zvZujVKtCoSLqNaS7L22kTWoSD_737lrB08Aw85j3Q-iSkppSom-eX5azmmolayFkc4QmVMq2YkyqYzQhhLaVZlSforOcPwghXCo-Qe93tli8T7GDnH1Y4wLdJvjPL8jYxYTLBnAPg1l8DNiGHvtQIO0TFPtrRTdUtpDB553vcPbrYLf5HJ24QeDiT6fobX7_OnusFsuHp9ntorKcNKVinRJMO-2sU0oxQQizvZOMSEVXVlitYQXUAbdCA3McWN8ypbXsWd_0nPMpuj7cjbl4kzs_zu9iCMNgI6Rqxy-nqD6EuhRzTuDMPvmdTd-GEjOiMyM6M6IzI7qhcHUoeAD4DwuheNvwH6j_a4M</recordid><startdate>19650101</startdate><enddate>19650101</enddate><creator>Archambeau, C.B.</creator><creator>Bradford, J.C.</creator><creator>Broome, P.W.</creator><creator>Dean, W.C.</creator><creator>Flinn, E.A.</creator><creator>Sax, R.L.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19650101</creationdate><title>Data processing techniques for the detection and interpretation of teleseismic signals</title><author>Archambeau, C.B. ; Bradford, J.C. ; Broome, P.W. ; Dean, W.C. ; Flinn, E.A. ; Sax, R.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-2c6429f9faf66624002adf520561ba4a99ebe1fe3a49e2f3e2d826995d2d7d333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1965</creationdate><topic>BACKGROUND</topic><topic>Background noise</topic><topic>Coherence</topic><topic>COMPUTERS</topic><topic>CONFIGURATION</topic><topic>DATA PROCESSING</topic><topic>DEFORMATION</topic><topic>DETECTION</topic><topic>EARTH</topic><topic>Earthquakes</topic><topic>ENERGY</topic><topic>Explosions</topic><topic>FREQUENCY</topic><topic>Frequency estimation</topic><topic>GEOLOGY, METEOROLOGY, AND MINERALOGY</topic><topic>LATTICES</topic><topic>LEVELS</topic><topic>Noise cancellation</topic><topic>Noise measurement</topic><topic>NUCLEAR EXPLOSIONS</topic><topic>NUMERICALS</topic><topic>POLARIZATION</topic><topic>PRESSURE</topic><topic>RESOLUTION</topic><topic>RESONANCE</topic><topic>Seismic measurements</topic><topic>SEISMOLOGY</topic><topic>SHEAR WAVES</topic><topic>SHOCK WAVES</topic><topic>Signal processing</topic><topic>SIGNALS</topic><topic>SPECTRA</topic><topic>SURFACES</topic><topic>Techniques and Equipment</topic><topic>THERMODYNAMICS</topic><topic>VARIATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Archambeau, C.B.</creatorcontrib><creatorcontrib>Bradford, J.C.</creatorcontrib><creatorcontrib>Broome, P.W.</creatorcontrib><creatorcontrib>Dean, W.C.</creatorcontrib><creatorcontrib>Flinn, E.A.</creatorcontrib><creatorcontrib>Sax, R.L.</creatorcontrib><creatorcontrib>Seismic Data Lab., Teledyne Inc., Alexandria, Va</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Proc. IEEE (Inst. Elec. Electron. Eng.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Archambeau, C.B.</au><au>Bradford, J.C.</au><au>Broome, P.W.</au><au>Dean, W.C.</au><au>Flinn, E.A.</au><au>Sax, R.L.</au><aucorp>Seismic Data Lab., Teledyne Inc., Alexandria, Va</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data processing techniques for the detection and interpretation of teleseismic signals</atitle><jtitle>Proc. IEEE (Inst. Elec. Electron. Eng.)</jtitle><stitle>JPROC</stitle><date>1965-01-01</date><risdate>1965</risdate><volume>53</volume><issue>12</issue><spage>1860</spage><epage>1861</epage><pages>1860-1861</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>This paper is a collection of six papers describing recent developments in automated detection and identification of teleseismic earthquakes and explosions in a seismic noise background. The first paper evaluates the assumption that the outputs of seismometer arrays can be added since the signals will reinforce while the noise is cancelled. Signal and noise correlations vs. distance and frequency are presented for an array of 1600 km in extent. The second paper describes a method utilizing orthogonal expansions of the Kautz type in an effort to determine spectral and temporal differences between both types of signals and noise. Theory and measurements indicate that the seismic noise background is largely composed of fundamental and higher mode Rayleigh waves. The third paper describes a thermal equilibrium analogy to estimate the noise energies in each mode to account for the observed depth and frequency behavior. The use of multiple and partial coherence functions for resolving noise backgrounds into their propagation components is described in the fourth paper. Compressional, shear, and surface wave components of signals can be separated from seismic noise backgrounds by recognizing their differing polarization properties, as shown in the fifth paper. The source mechanisms can theoretically be identified from their radiation patterns provided instrument and travel path distortions are removed. A final paper describes this theory and how these various methods of detecting and isolating the signals can be integrated into an automated signal analysis system.</abstract><pub>IEEE</pub><doi>10.1109/PROC.1965.4457</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9219 |
ispartof | Proc. IEEE (Inst. Elec. Electron. Eng.), 1965-01, Vol.53 (12), p.1860-1861 |
issn | 0018-9219 1558-2256 |
language | eng |
recordid | cdi_crossref_primary_10_1109_PROC_1965_4457 |
source | IEEE Electronic Library (IEL) |
subjects | BACKGROUND Background noise Coherence COMPUTERS CONFIGURATION DATA PROCESSING DEFORMATION DETECTION EARTH Earthquakes ENERGY Explosions FREQUENCY Frequency estimation GEOLOGY, METEOROLOGY, AND MINERALOGY LATTICES LEVELS Noise cancellation Noise measurement NUCLEAR EXPLOSIONS NUMERICALS POLARIZATION PRESSURE RESOLUTION RESONANCE Seismic measurements SEISMOLOGY SHEAR WAVES SHOCK WAVES Signal processing SIGNALS SPECTRA SURFACES Techniques and Equipment THERMODYNAMICS VARIATIONS |
title | Data processing techniques for the detection and interpretation of teleseismic signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A14%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20processing%20techniques%20for%20the%20detection%20and%20interpretation%20of%20teleseismic%20signals&rft.jtitle=Proc.%20IEEE%20(Inst.%20Elec.%20Electron.%20Eng.)&rft.au=Archambeau,%20C.B.&rft.aucorp=Seismic%20Data%20Lab.,%20Teledyne%20Inc.,%20Alexandria,%20Va&rft.date=1965-01-01&rft.volume=53&rft.issue=12&rft.spage=1860&rft.epage=1861&rft.pages=1860-1861&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/PROC.1965.4457&rft_dat=%3Ccrossref_RIE%3E10_1109_PROC_1965_4457%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1446387&rfr_iscdi=true |