Data processing techniques for the detection and interpretation of teleseismic signals

This paper is a collection of six papers describing recent developments in automated detection and identification of teleseismic earthquakes and explosions in a seismic noise background. The first paper evaluates the assumption that the outputs of seismometer arrays can be added since the signals wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proc. IEEE (Inst. Elec. Electron. Eng.) 1965-01, Vol.53 (12), p.1860-1861
Hauptverfasser: Archambeau, C.B., Bradford, J.C., Broome, P.W., Dean, W.C., Flinn, E.A., Sax, R.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1861
container_issue 12
container_start_page 1860
container_title Proc. IEEE (Inst. Elec. Electron. Eng.)
container_volume 53
creator Archambeau, C.B.
Bradford, J.C.
Broome, P.W.
Dean, W.C.
Flinn, E.A.
Sax, R.L.
description This paper is a collection of six papers describing recent developments in automated detection and identification of teleseismic earthquakes and explosions in a seismic noise background. The first paper evaluates the assumption that the outputs of seismometer arrays can be added since the signals will reinforce while the noise is cancelled. Signal and noise correlations vs. distance and frequency are presented for an array of 1600 km in extent. The second paper describes a method utilizing orthogonal expansions of the Kautz type in an effort to determine spectral and temporal differences between both types of signals and noise. Theory and measurements indicate that the seismic noise background is largely composed of fundamental and higher mode Rayleigh waves. The third paper describes a thermal equilibrium analogy to estimate the noise energies in each mode to account for the observed depth and frequency behavior. The use of multiple and partial coherence functions for resolving noise backgrounds into their propagation components is described in the fourth paper. Compressional, shear, and surface wave components of signals can be separated from seismic noise backgrounds by recognizing their differing polarization properties, as shown in the fifth paper. The source mechanisms can theoretically be identified from their radiation patterns provided instrument and travel path distortions are removed. A final paper describes this theory and how these various methods of detecting and isolating the signals can be integrated into an automated signal analysis system.
doi_str_mv 10.1109/PROC.1965.4457
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_PROC_1965_4457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1446387</ieee_id><sourcerecordid>10_1109_PROC_1965_4457</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-2c6429f9faf66624002adf520561ba4a99ebe1fe3a49e2f3e2d826995d2d7d333</originalsourceid><addsrcrecordid>eNpFkM1LAzEUxIMoWKtXL16C913zvZujVKtCoSLqNaS7L22kTWoSD_737lrB08Aw85j3Q-iSkppSom-eX5azmmolayFkc4QmVMq2YkyqYzQhhLaVZlSforOcPwghXCo-Qe93tli8T7GDnH1Y4wLdJvjPL8jYxYTLBnAPg1l8DNiGHvtQIO0TFPtrRTdUtpDB553vcPbrYLf5HJ24QeDiT6fobX7_OnusFsuHp9ntorKcNKVinRJMO-2sU0oxQQizvZOMSEVXVlitYQXUAbdCA3McWN8ypbXsWd_0nPMpuj7cjbl4kzs_zu9iCMNgI6Rqxy-nqD6EuhRzTuDMPvmdTd-GEjOiMyM6M6IzI7qhcHUoeAD4DwuheNvwH6j_a4M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data processing techniques for the detection and interpretation of teleseismic signals</title><source>IEEE Electronic Library (IEL)</source><creator>Archambeau, C.B. ; Bradford, J.C. ; Broome, P.W. ; Dean, W.C. ; Flinn, E.A. ; Sax, R.L.</creator><creatorcontrib>Archambeau, C.B. ; Bradford, J.C. ; Broome, P.W. ; Dean, W.C. ; Flinn, E.A. ; Sax, R.L. ; Seismic Data Lab., Teledyne Inc., Alexandria, Va</creatorcontrib><description>This paper is a collection of six papers describing recent developments in automated detection and identification of teleseismic earthquakes and explosions in a seismic noise background. The first paper evaluates the assumption that the outputs of seismometer arrays can be added since the signals will reinforce while the noise is cancelled. Signal and noise correlations vs. distance and frequency are presented for an array of 1600 km in extent. The second paper describes a method utilizing orthogonal expansions of the Kautz type in an effort to determine spectral and temporal differences between both types of signals and noise. Theory and measurements indicate that the seismic noise background is largely composed of fundamental and higher mode Rayleigh waves. The third paper describes a thermal equilibrium analogy to estimate the noise energies in each mode to account for the observed depth and frequency behavior. The use of multiple and partial coherence functions for resolving noise backgrounds into their propagation components is described in the fourth paper. Compressional, shear, and surface wave components of signals can be separated from seismic noise backgrounds by recognizing their differing polarization properties, as shown in the fifth paper. The source mechanisms can theoretically be identified from their radiation patterns provided instrument and travel path distortions are removed. A final paper describes this theory and how these various methods of detecting and isolating the signals can be integrated into an automated signal analysis system.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/PROC.1965.4457</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>BACKGROUND ; Background noise ; Coherence ; COMPUTERS ; CONFIGURATION ; DATA PROCESSING ; DEFORMATION ; DETECTION ; EARTH ; Earthquakes ; ENERGY ; Explosions ; FREQUENCY ; Frequency estimation ; GEOLOGY, METEOROLOGY, AND MINERALOGY ; LATTICES ; LEVELS ; Noise cancellation ; Noise measurement ; NUCLEAR EXPLOSIONS ; NUMERICALS ; POLARIZATION ; PRESSURE ; RESOLUTION ; RESONANCE ; Seismic measurements ; SEISMOLOGY ; SHEAR WAVES ; SHOCK WAVES ; Signal processing ; SIGNALS ; SPECTRA ; SURFACES ; Techniques and Equipment ; THERMODYNAMICS ; VARIATIONS</subject><ispartof>Proc. IEEE (Inst. Elec. Electron. Eng.), 1965-01, Vol.53 (12), p.1860-1861</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-2c6429f9faf66624002adf520561ba4a99ebe1fe3a49e2f3e2d826995d2d7d333</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1446387$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,882,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1446387$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/4568356$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Archambeau, C.B.</creatorcontrib><creatorcontrib>Bradford, J.C.</creatorcontrib><creatorcontrib>Broome, P.W.</creatorcontrib><creatorcontrib>Dean, W.C.</creatorcontrib><creatorcontrib>Flinn, E.A.</creatorcontrib><creatorcontrib>Sax, R.L.</creatorcontrib><creatorcontrib>Seismic Data Lab., Teledyne Inc., Alexandria, Va</creatorcontrib><title>Data processing techniques for the detection and interpretation of teleseismic signals</title><title>Proc. IEEE (Inst. Elec. Electron. Eng.)</title><addtitle>JPROC</addtitle><description>This paper is a collection of six papers describing recent developments in automated detection and identification of teleseismic earthquakes and explosions in a seismic noise background. The first paper evaluates the assumption that the outputs of seismometer arrays can be added since the signals will reinforce while the noise is cancelled. Signal and noise correlations vs. distance and frequency are presented for an array of 1600 km in extent. The second paper describes a method utilizing orthogonal expansions of the Kautz type in an effort to determine spectral and temporal differences between both types of signals and noise. Theory and measurements indicate that the seismic noise background is largely composed of fundamental and higher mode Rayleigh waves. The third paper describes a thermal equilibrium analogy to estimate the noise energies in each mode to account for the observed depth and frequency behavior. The use of multiple and partial coherence functions for resolving noise backgrounds into their propagation components is described in the fourth paper. Compressional, shear, and surface wave components of signals can be separated from seismic noise backgrounds by recognizing their differing polarization properties, as shown in the fifth paper. The source mechanisms can theoretically be identified from their radiation patterns provided instrument and travel path distortions are removed. A final paper describes this theory and how these various methods of detecting and isolating the signals can be integrated into an automated signal analysis system.</description><subject>BACKGROUND</subject><subject>Background noise</subject><subject>Coherence</subject><subject>COMPUTERS</subject><subject>CONFIGURATION</subject><subject>DATA PROCESSING</subject><subject>DEFORMATION</subject><subject>DETECTION</subject><subject>EARTH</subject><subject>Earthquakes</subject><subject>ENERGY</subject><subject>Explosions</subject><subject>FREQUENCY</subject><subject>Frequency estimation</subject><subject>GEOLOGY, METEOROLOGY, AND MINERALOGY</subject><subject>LATTICES</subject><subject>LEVELS</subject><subject>Noise cancellation</subject><subject>Noise measurement</subject><subject>NUCLEAR EXPLOSIONS</subject><subject>NUMERICALS</subject><subject>POLARIZATION</subject><subject>PRESSURE</subject><subject>RESOLUTION</subject><subject>RESONANCE</subject><subject>Seismic measurements</subject><subject>SEISMOLOGY</subject><subject>SHEAR WAVES</subject><subject>SHOCK WAVES</subject><subject>Signal processing</subject><subject>SIGNALS</subject><subject>SPECTRA</subject><subject>SURFACES</subject><subject>Techniques and Equipment</subject><subject>THERMODYNAMICS</subject><subject>VARIATIONS</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1965</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LAzEUxIMoWKtXL16C913zvZujVKtCoSLqNaS7L22kTWoSD_737lrB08Aw85j3Q-iSkppSom-eX5azmmolayFkc4QmVMq2YkyqYzQhhLaVZlSforOcPwghXCo-Qe93tli8T7GDnH1Y4wLdJvjPL8jYxYTLBnAPg1l8DNiGHvtQIO0TFPtrRTdUtpDB553vcPbrYLf5HJ24QeDiT6fobX7_OnusFsuHp9ntorKcNKVinRJMO-2sU0oxQQizvZOMSEVXVlitYQXUAbdCA3McWN8ypbXsWd_0nPMpuj7cjbl4kzs_zu9iCMNgI6Rqxy-nqD6EuhRzTuDMPvmdTd-GEjOiMyM6M6IzI7qhcHUoeAD4DwuheNvwH6j_a4M</recordid><startdate>19650101</startdate><enddate>19650101</enddate><creator>Archambeau, C.B.</creator><creator>Bradford, J.C.</creator><creator>Broome, P.W.</creator><creator>Dean, W.C.</creator><creator>Flinn, E.A.</creator><creator>Sax, R.L.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19650101</creationdate><title>Data processing techniques for the detection and interpretation of teleseismic signals</title><author>Archambeau, C.B. ; Bradford, J.C. ; Broome, P.W. ; Dean, W.C. ; Flinn, E.A. ; Sax, R.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-2c6429f9faf66624002adf520561ba4a99ebe1fe3a49e2f3e2d826995d2d7d333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1965</creationdate><topic>BACKGROUND</topic><topic>Background noise</topic><topic>Coherence</topic><topic>COMPUTERS</topic><topic>CONFIGURATION</topic><topic>DATA PROCESSING</topic><topic>DEFORMATION</topic><topic>DETECTION</topic><topic>EARTH</topic><topic>Earthquakes</topic><topic>ENERGY</topic><topic>Explosions</topic><topic>FREQUENCY</topic><topic>Frequency estimation</topic><topic>GEOLOGY, METEOROLOGY, AND MINERALOGY</topic><topic>LATTICES</topic><topic>LEVELS</topic><topic>Noise cancellation</topic><topic>Noise measurement</topic><topic>NUCLEAR EXPLOSIONS</topic><topic>NUMERICALS</topic><topic>POLARIZATION</topic><topic>PRESSURE</topic><topic>RESOLUTION</topic><topic>RESONANCE</topic><topic>Seismic measurements</topic><topic>SEISMOLOGY</topic><topic>SHEAR WAVES</topic><topic>SHOCK WAVES</topic><topic>Signal processing</topic><topic>SIGNALS</topic><topic>SPECTRA</topic><topic>SURFACES</topic><topic>Techniques and Equipment</topic><topic>THERMODYNAMICS</topic><topic>VARIATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Archambeau, C.B.</creatorcontrib><creatorcontrib>Bradford, J.C.</creatorcontrib><creatorcontrib>Broome, P.W.</creatorcontrib><creatorcontrib>Dean, W.C.</creatorcontrib><creatorcontrib>Flinn, E.A.</creatorcontrib><creatorcontrib>Sax, R.L.</creatorcontrib><creatorcontrib>Seismic Data Lab., Teledyne Inc., Alexandria, Va</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Proc. IEEE (Inst. Elec. Electron. Eng.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Archambeau, C.B.</au><au>Bradford, J.C.</au><au>Broome, P.W.</au><au>Dean, W.C.</au><au>Flinn, E.A.</au><au>Sax, R.L.</au><aucorp>Seismic Data Lab., Teledyne Inc., Alexandria, Va</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data processing techniques for the detection and interpretation of teleseismic signals</atitle><jtitle>Proc. IEEE (Inst. Elec. Electron. Eng.)</jtitle><stitle>JPROC</stitle><date>1965-01-01</date><risdate>1965</risdate><volume>53</volume><issue>12</issue><spage>1860</spage><epage>1861</epage><pages>1860-1861</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>This paper is a collection of six papers describing recent developments in automated detection and identification of teleseismic earthquakes and explosions in a seismic noise background. The first paper evaluates the assumption that the outputs of seismometer arrays can be added since the signals will reinforce while the noise is cancelled. Signal and noise correlations vs. distance and frequency are presented for an array of 1600 km in extent. The second paper describes a method utilizing orthogonal expansions of the Kautz type in an effort to determine spectral and temporal differences between both types of signals and noise. Theory and measurements indicate that the seismic noise background is largely composed of fundamental and higher mode Rayleigh waves. The third paper describes a thermal equilibrium analogy to estimate the noise energies in each mode to account for the observed depth and frequency behavior. The use of multiple and partial coherence functions for resolving noise backgrounds into their propagation components is described in the fourth paper. Compressional, shear, and surface wave components of signals can be separated from seismic noise backgrounds by recognizing their differing polarization properties, as shown in the fifth paper. The source mechanisms can theoretically be identified from their radiation patterns provided instrument and travel path distortions are removed. A final paper describes this theory and how these various methods of detecting and isolating the signals can be integrated into an automated signal analysis system.</abstract><pub>IEEE</pub><doi>10.1109/PROC.1965.4457</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9219
ispartof Proc. IEEE (Inst. Elec. Electron. Eng.), 1965-01, Vol.53 (12), p.1860-1861
issn 0018-9219
1558-2256
language eng
recordid cdi_crossref_primary_10_1109_PROC_1965_4457
source IEEE Electronic Library (IEL)
subjects BACKGROUND
Background noise
Coherence
COMPUTERS
CONFIGURATION
DATA PROCESSING
DEFORMATION
DETECTION
EARTH
Earthquakes
ENERGY
Explosions
FREQUENCY
Frequency estimation
GEOLOGY, METEOROLOGY, AND MINERALOGY
LATTICES
LEVELS
Noise cancellation
Noise measurement
NUCLEAR EXPLOSIONS
NUMERICALS
POLARIZATION
PRESSURE
RESOLUTION
RESONANCE
Seismic measurements
SEISMOLOGY
SHEAR WAVES
SHOCK WAVES
Signal processing
SIGNALS
SPECTRA
SURFACES
Techniques and Equipment
THERMODYNAMICS
VARIATIONS
title Data processing techniques for the detection and interpretation of teleseismic signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A14%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20processing%20techniques%20for%20the%20detection%20and%20interpretation%20of%20teleseismic%20signals&rft.jtitle=Proc.%20IEEE%20(Inst.%20Elec.%20Electron.%20Eng.)&rft.au=Archambeau,%20C.B.&rft.aucorp=Seismic%20Data%20Lab.,%20Teledyne%20Inc.,%20Alexandria,%20Va&rft.date=1965-01-01&rft.volume=53&rft.issue=12&rft.spage=1860&rft.epage=1861&rft.pages=1860-1861&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/PROC.1965.4457&rft_dat=%3Ccrossref_RIE%3E10_1109_PROC_1965_4457%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1446387&rfr_iscdi=true